基于深度强化学习的多旋翼航空机器人激光响应导航

Carlos Sampedro, Hriday Bavle, Alejandro Rodriguez-Ramos, P. D. L. Puente, P. Campoy
{"title":"基于深度强化学习的多旋翼航空机器人激光响应导航","authors":"Carlos Sampedro, Hriday Bavle, Alejandro Rodriguez-Ramos, P. D. L. Puente, P. Campoy","doi":"10.1109/IROS.2018.8593706","DOIUrl":null,"url":null,"abstract":"Navigation in unknown indoor environments with fast collision avoidance capabilities is an ongoing research topic. Traditional motion planning algorithms rely on precise maps of the environment, where re-adapting a generated path can be highly demanding in terms of computational cost. In this paper, we present a fast reactive navigation algorithm using Deep Reinforcement Learning applied to multi rotor aerial robots. Taking as input the 2D-laser range measurements and the relative position of the aerial robot with respect to the desired goal, the proposed algorithm is successfully trained in a Gazebo-based simulation scenario by adopting an artificial potential field formulation. A thorough evaluation of the trained agent has been carried out both in simulated and real indoor scenarios, showing the appropriate reactive navigation behavior of the agent in the presence of static and dynamic obstacles.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"20 1","pages":"1024-1031"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning\",\"authors\":\"Carlos Sampedro, Hriday Bavle, Alejandro Rodriguez-Ramos, P. D. L. Puente, P. Campoy\",\"doi\":\"10.1109/IROS.2018.8593706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation in unknown indoor environments with fast collision avoidance capabilities is an ongoing research topic. Traditional motion planning algorithms rely on precise maps of the environment, where re-adapting a generated path can be highly demanding in terms of computational cost. In this paper, we present a fast reactive navigation algorithm using Deep Reinforcement Learning applied to multi rotor aerial robots. Taking as input the 2D-laser range measurements and the relative position of the aerial robot with respect to the desired goal, the proposed algorithm is successfully trained in a Gazebo-based simulation scenario by adopting an artificial potential field formulation. A thorough evaluation of the trained agent has been carried out both in simulated and real indoor scenarios, showing the appropriate reactive navigation behavior of the agent in the presence of static and dynamic obstacles.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"20 1\",\"pages\":\"1024-1031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

在未知室内环境下具有快速避碰能力的导航是一个不断发展的研究课题。传统的运动规划算法依赖于精确的环境地图,其中重新调整生成的路径在计算成本方面要求很高。本文提出了一种基于深度强化学习的多旋翼航空机器人快速响应导航算法。以二维激光距离测量值和空中机器人相对目标的相对位置为输入,采用人工势场公式,在基于gazebo的仿真场景中成功训练了该算法。在模拟和真实室内场景中对训练的智能体进行了全面的评估,显示了智能体在静态和动态障碍物存在下的适当反应性导航行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning
Navigation in unknown indoor environments with fast collision avoidance capabilities is an ongoing research topic. Traditional motion planning algorithms rely on precise maps of the environment, where re-adapting a generated path can be highly demanding in terms of computational cost. In this paper, we present a fast reactive navigation algorithm using Deep Reinforcement Learning applied to multi rotor aerial robots. Taking as input the 2D-laser range measurements and the relative position of the aerial robot with respect to the desired goal, the proposed algorithm is successfully trained in a Gazebo-based simulation scenario by adopting an artificial potential field formulation. A thorough evaluation of the trained agent has been carried out both in simulated and real indoor scenarios, showing the appropriate reactive navigation behavior of the agent in the presence of static and dynamic obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信