仿射空间的一些共驯服自同构

Dayan Liu, Fumei Liu, Xiaosong Sun
{"title":"仿射空间的一些共驯服自同构","authors":"Dayan Liu, Fumei Liu, Xiaosong Sun","doi":"10.1142/s0218196721500582","DOIUrl":null,"url":null,"abstract":"The investigation of co-tame automorphisms of the affine space [Formula: see text] is helpful to understand the structure of its automorphisms group. In this paper, we show the co-tameness of several classes of automorphisms, including some 3-parabolic automorphisms, power-linear automorphisms, homogeneous automorphisms in small dimension or small transcendence degree. We also classify all additive-nilpotent automorphisms in dimension four and show that they are co-tame.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"136 1","pages":"1601-1612"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some co-tame automorphisms of affine spaces\",\"authors\":\"Dayan Liu, Fumei Liu, Xiaosong Sun\",\"doi\":\"10.1142/s0218196721500582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of co-tame automorphisms of the affine space [Formula: see text] is helpful to understand the structure of its automorphisms group. In this paper, we show the co-tameness of several classes of automorphisms, including some 3-parabolic automorphisms, power-linear automorphisms, homogeneous automorphisms in small dimension or small transcendence degree. We also classify all additive-nilpotent automorphisms in dimension four and show that they are co-tame.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"136 1\",\"pages\":\"1601-1612\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196721500582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196721500582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究仿射空间的共驯服自同构[公式:见文]有助于理解其自同构群的结构。本文给出了几类自同构的共驯服性,包括一些3-抛物型自同构、幂线性自同构、小维或小超越度上的齐次自同构。我们还对四维中所有的加幂零自同构进行了分类,并证明了它们是共驯服的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some co-tame automorphisms of affine spaces
The investigation of co-tame automorphisms of the affine space [Formula: see text] is helpful to understand the structure of its automorphisms group. In this paper, we show the co-tameness of several classes of automorphisms, including some 3-parabolic automorphisms, power-linear automorphisms, homogeneous automorphisms in small dimension or small transcendence degree. We also classify all additive-nilpotent automorphisms in dimension four and show that they are co-tame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信