与偏对称汉堡张量相关的尺寸效应

IF 0.7 Q4 MECHANICS
A. Borokinni, O. Fadodun, O. Layeni, A. Akinola, B. Olokuntoye
{"title":"与偏对称汉堡张量相关的尺寸效应","authors":"A. Borokinni, O. Fadodun, O. Layeni, A. Akinola, B. Olokuntoye","doi":"10.2298/tam191125001b","DOIUrl":null,"url":null,"abstract":". This paper investigates size effect phenomena associated with the divergence of the transpose of plastic distortion in plastically deformed isotropic materials. The principle of virtual power, balance of energy, second law of thermodynamics, and codirectionality hypothesis are used to formulate the governing microforce balance and thermodynamically consistent constitutive relations for dissipative microscopic stresses associated with the plastic distortion and skew part of the Burgers tensor. It is obtained that the defect energy through the strictly skew Burgers tensor is converted to the defect energy via the divergence of the plastic distortion. The presence of material length scales in the obtained flow rule indicates that it is possible to appre- hend size effects associated with the skew part of the Burgers tensor during the inhomogeneous plastic flow of solid material. Finally and amongst other things, it is shown that the dependency of the microscopic stress vector on the divergence of plastic distortion rate leads to weakening and strengthening effects in the flow rule.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"33 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size effects associated with skew symmetric burgers tensor\",\"authors\":\"A. Borokinni, O. Fadodun, O. Layeni, A. Akinola, B. Olokuntoye\",\"doi\":\"10.2298/tam191125001b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper investigates size effect phenomena associated with the divergence of the transpose of plastic distortion in plastically deformed isotropic materials. The principle of virtual power, balance of energy, second law of thermodynamics, and codirectionality hypothesis are used to formulate the governing microforce balance and thermodynamically consistent constitutive relations for dissipative microscopic stresses associated with the plastic distortion and skew part of the Burgers tensor. It is obtained that the defect energy through the strictly skew Burgers tensor is converted to the defect energy via the divergence of the plastic distortion. The presence of material length scales in the obtained flow rule indicates that it is possible to appre- hend size effects associated with the skew part of the Burgers tensor during the inhomogeneous plastic flow of solid material. Finally and amongst other things, it is shown that the dependency of the microscopic stress vector on the divergence of plastic distortion rate leads to weakening and strengthening effects in the flow rule.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam191125001b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam191125001b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了塑性变形各向同性材料中与塑性变形转置散度有关的尺寸效应现象。利用虚力原理、能量平衡、热力学第二定律和共向性假设,建立了与Burgers张量的塑性变形和偏曲部分相关的耗散微观应力的控制微力平衡和热力学一致的本构关系。得到了通过严格偏态Burgers张量的缺陷能量通过塑性畸变的散度转化为缺陷能量。在得到的流动规律中存在材料长度尺度表明,在固体材料的非均匀塑性流动过程中,有可能理解与Burgers张量的偏态部分相关的末端尺寸效应。结果表明,细观应力矢量对塑性变形率散度的依赖性导致了流变规律的弱化和强化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size effects associated with skew symmetric burgers tensor
. This paper investigates size effect phenomena associated with the divergence of the transpose of plastic distortion in plastically deformed isotropic materials. The principle of virtual power, balance of energy, second law of thermodynamics, and codirectionality hypothesis are used to formulate the governing microforce balance and thermodynamically consistent constitutive relations for dissipative microscopic stresses associated with the plastic distortion and skew part of the Burgers tensor. It is obtained that the defect energy through the strictly skew Burgers tensor is converted to the defect energy via the divergence of the plastic distortion. The presence of material length scales in the obtained flow rule indicates that it is possible to appre- hend size effects associated with the skew part of the Burgers tensor during the inhomogeneous plastic flow of solid material. Finally and amongst other things, it is shown that the dependency of the microscopic stress vector on the divergence of plastic distortion rate leads to weakening and strengthening effects in the flow rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信