三维各向异性介质中安德森局域化转变中输运各向异性的抑制

Antton Goïcoechea, S. Skipetrov, J. Page
{"title":"三维各向异性介质中安德森局域化转变中输运各向异性的抑制","authors":"Antton Goïcoechea, S. Skipetrov, J. Page","doi":"10.1103/physrevb.102.220201","DOIUrl":null,"url":null,"abstract":"We study the transport of classical waves through three-dimensional (3D) anisotropic media close to the Anderson localization transition. Time-, frequency-, and position-resolved ultrasonic measurements are performed on anisotropic slab-shaped mesoglass samples to probe the dynamics and the anisotropy of the multiple scattering halo, and hence to investigate the influence of disorder on the nature of wave transport and its anisotropy. These experiments allow us to address conflicting theoretical predictions that have been made about whether or not the transport anisotropy is affected by the interference effects that lead to Anderson localization. We find that the transport anisotropy is significantly reduced as the mobility edge is approached---a behavior similar to the one predicted recently for matter waves in infinite anisotropic 3D media.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Suppression of transport anisotropy at the Anderson localization transition in three-dimensional anisotropic media\",\"authors\":\"Antton Goïcoechea, S. Skipetrov, J. Page\",\"doi\":\"10.1103/physrevb.102.220201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the transport of classical waves through three-dimensional (3D) anisotropic media close to the Anderson localization transition. Time-, frequency-, and position-resolved ultrasonic measurements are performed on anisotropic slab-shaped mesoglass samples to probe the dynamics and the anisotropy of the multiple scattering halo, and hence to investigate the influence of disorder on the nature of wave transport and its anisotropy. These experiments allow us to address conflicting theoretical predictions that have been made about whether or not the transport anisotropy is affected by the interference effects that lead to Anderson localization. We find that the transport anisotropy is significantly reduced as the mobility edge is approached---a behavior similar to the one predicted recently for matter waves in infinite anisotropic 3D media.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.220201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.220201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了经典波在接近安德森局域化跃迁的三维各向异性介质中的输运。对各向异性板状介玻璃样品进行了时间、频率和位置分辨超声测量,以探测多重散射晕的动力学和各向异性,从而研究无序对波输运性质及其各向异性的影响。这些实验使我们能够解决关于输运各向异性是否受到导致安德森局域化的干扰效应影响的相互矛盾的理论预测。我们发现,随着迁移率边缘的接近,输运各向异性显著降低——这种行为类似于最近对无限各向异性三维介质中物质波的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of transport anisotropy at the Anderson localization transition in three-dimensional anisotropic media
We study the transport of classical waves through three-dimensional (3D) anisotropic media close to the Anderson localization transition. Time-, frequency-, and position-resolved ultrasonic measurements are performed on anisotropic slab-shaped mesoglass samples to probe the dynamics and the anisotropy of the multiple scattering halo, and hence to investigate the influence of disorder on the nature of wave transport and its anisotropy. These experiments allow us to address conflicting theoretical predictions that have been made about whether or not the transport anisotropy is affected by the interference effects that lead to Anderson localization. We find that the transport anisotropy is significantly reduced as the mobility edge is approached---a behavior similar to the one predicted recently for matter waves in infinite anisotropic 3D media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信