关于收益率为2的双风险离散时间风险模型的说明

IF 0.7 Q3 STATISTICS & PROBABILITY
A. Grigutis, Artur Nakliuda
{"title":"关于收益率为2的双风险离散时间风险模型的说明","authors":"A. Grigutis, Artur Nakliuda","doi":"10.15559/22-vmsta209","DOIUrl":null,"url":null,"abstract":"This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\\textstyle\\sum _{i=1}^{t}}{X_{i}}-{\\textstyle\\sum _{j=1}^{\\lfloor t/2\\rfloor }}{Y_{j}}$, $u\\in \\mathbb{N}\\cup \\{0\\}$, to stay positive for all $t\\in \\{1,\\hspace{0.1667em}2,\\hspace{0.1667em}\\dots ,\\hspace{0.1667em}T\\}$, when $T\\in \\mathbb{N}$ or $T\\to \\infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\\hspace{0.1667em}{X_{2}}+{Y_{1}},\\hspace{0.1667em}{X_{3}},\\hspace{0.1667em}{X_{4}}+{Y_{2}},\\hspace{0.1667em}\\dots $ Here ${X_{i}},\\hspace{0.1667em}i\\in \\mathbb{N}$, and ${Y_{j}},\\hspace{0.1667em}j\\in \\mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\\textstyle\\sum _{i=1}^{t}}{X_{i}}{\\mathbb{1}_{\\{i\\hspace{2.5pt}\\text{is odd}\\}}}-{\\textstyle\\sum _{j=1}^{t}}{Y_{i}}{\\mathbb{1}_{\\{j\\hspace{2.5pt}\\text{is even}\\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"13 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the bi-risk discrete time risk model with income rate two\",\"authors\":\"A. Grigutis, Artur Nakliuda\",\"doi\":\"10.15559/22-vmsta209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\\\\textstyle\\\\sum _{i=1}^{t}}{X_{i}}-{\\\\textstyle\\\\sum _{j=1}^{\\\\lfloor t/2\\\\rfloor }}{Y_{j}}$, $u\\\\in \\\\mathbb{N}\\\\cup \\\\{0\\\\}$, to stay positive for all $t\\\\in \\\\{1,\\\\hspace{0.1667em}2,\\\\hspace{0.1667em}\\\\dots ,\\\\hspace{0.1667em}T\\\\}$, when $T\\\\in \\\\mathbb{N}$ or $T\\\\to \\\\infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\\\\hspace{0.1667em}{X_{2}}+{Y_{1}},\\\\hspace{0.1667em}{X_{3}},\\\\hspace{0.1667em}{X_{4}}+{Y_{2}},\\\\hspace{0.1667em}\\\\dots $ Here ${X_{i}},\\\\hspace{0.1667em}i\\\\in \\\\mathbb{N}$, and ${Y_{j}},\\\\hspace{0.1667em}j\\\\in \\\\mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\\\\textstyle\\\\sum _{i=1}^{t}}{X_{i}}{\\\\mathbb{1}_{\\\\{i\\\\hspace{2.5pt}\\\\text{is odd}\\\\}}}-{\\\\textstyle\\\\sum _{j=1}^{t}}{Y_{i}}{\\\\mathbb{1}_{\\\\{j\\\\hspace{2.5pt}\\\\text{is even}\\\\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/22-vmsta209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/22-vmsta209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了收益率为2的双风险离散时间风险模型的生存概率计算公式。更准确地说,考虑到$T\in \mathbb{N}$或$T\to \infty $时,随机过程$u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$对所有$t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$保持正值的可能性,其中减去的随机部分由随机变量的总和组成,随机变量按以下顺序在时间上发生:${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $这里${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$和${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$是两个独立但不一定同分布的非负整数随机变量X和y的独立副本。根据已知的收入率为2的类似双季节模型的生存概率公式$u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$,演示了如何使用双季节模型来表示双风险情况下的生存概率计算公式。最后给出了应用推导出的理论表达式的几个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the bi-risk discrete time risk model with income rate two
This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$, to stay positive for all $t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$, when $T\in \mathbb{N}$ or $T\to \infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $ Here ${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$, and ${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信