基于嵌入应变和电解质流动驱动孔隙度演化的颗粒级分辨率多物理场电池模型

Zhenlin Wang, K. Garikipati
{"title":"基于嵌入应变和电解质流动驱动孔隙度演化的颗粒级分辨率多物理场电池模型","authors":"Zhenlin Wang, K. Garikipati","doi":"10.1149/2.0141811jes","DOIUrl":null,"url":null,"abstract":"We present a coupled continuum formulation for the electrostatic, chemical, thermal, mechanical and fluid physics in battery materials. Our treatment is at the particle scale, at which the active particles held together by binders, the porous separator, current collectors and the perfusing electrolyte are explicitly modeled. Starting with the description common to the field, in terms of reaction-transport partial differential equations for ions, variants of the classical Poisson equation for electrostatics, and the heat equation, we introduce solid-fluid interaction to the problem. Our main contribution is to model the electrolyte as an incompressible fluid driven by elastic, thermal and lithium intercalation strains in the active material. Our treatment is in the finite strain setting, and uses the Arbitrary Lagrangian-Eulerian (ALE) framework to account for mechanical coupling of the solid and fluid. We present a detailed computational study of the influence of solid-fluid interaction, intercalation strain magnitude, particle size and initial porosity upon porosity evolution, ion distribution and electrostatic potential fields in the cell. We also present some comparison between the particle scale model and a recent homogenized, electrode-scale model.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multi-physics battery model with particle scale resolution of porosity evolution driven by intercalation strain and electrolyte flow\",\"authors\":\"Zhenlin Wang, K. Garikipati\",\"doi\":\"10.1149/2.0141811jes\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a coupled continuum formulation for the electrostatic, chemical, thermal, mechanical and fluid physics in battery materials. Our treatment is at the particle scale, at which the active particles held together by binders, the porous separator, current collectors and the perfusing electrolyte are explicitly modeled. Starting with the description common to the field, in terms of reaction-transport partial differential equations for ions, variants of the classical Poisson equation for electrostatics, and the heat equation, we introduce solid-fluid interaction to the problem. Our main contribution is to model the electrolyte as an incompressible fluid driven by elastic, thermal and lithium intercalation strains in the active material. Our treatment is in the finite strain setting, and uses the Arbitrary Lagrangian-Eulerian (ALE) framework to account for mechanical coupling of the solid and fluid. We present a detailed computational study of the influence of solid-fluid interaction, intercalation strain magnitude, particle size and initial porosity upon porosity evolution, ion distribution and electrostatic potential fields in the cell. We also present some comparison between the particle scale model and a recent homogenized, electrode-scale model.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0141811jes\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0141811jes","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了电池材料中静电、化学、热、机械和流体物理的耦合连续谱公式。我们的处理是在粒子尺度上,在这个尺度上,通过粘合剂、多孔分离器、集流器和灌注电解质结合在一起的活性粒子被明确地建模。从该领域常见的描述开始,根据离子的反应-输运偏微分方程,静电学的经典泊松方程的变体以及热方程,我们将固体-流体相互作用引入到问题中。我们的主要贡献是将电解质建模为不可压缩流体,由活性材料中的弹性,热和锂插层应变驱动。我们的处理是在有限应变设置,并使用任意拉格朗日-欧拉(ALE)框架来考虑固体和流体的机械耦合。我们对固流相互作用、插层应变大小、颗粒尺寸和初始孔隙度对孔隙演化、离子分布和静电势场的影响进行了详细的计算研究。我们还提出了粒子尺度模型和最近均质化的电极尺度模型之间的一些比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-physics battery model with particle scale resolution of porosity evolution driven by intercalation strain and electrolyte flow
We present a coupled continuum formulation for the electrostatic, chemical, thermal, mechanical and fluid physics in battery materials. Our treatment is at the particle scale, at which the active particles held together by binders, the porous separator, current collectors and the perfusing electrolyte are explicitly modeled. Starting with the description common to the field, in terms of reaction-transport partial differential equations for ions, variants of the classical Poisson equation for electrostatics, and the heat equation, we introduce solid-fluid interaction to the problem. Our main contribution is to model the electrolyte as an incompressible fluid driven by elastic, thermal and lithium intercalation strains in the active material. Our treatment is in the finite strain setting, and uses the Arbitrary Lagrangian-Eulerian (ALE) framework to account for mechanical coupling of the solid and fluid. We present a detailed computational study of the influence of solid-fluid interaction, intercalation strain magnitude, particle size and initial porosity upon porosity evolution, ion distribution and electrostatic potential fields in the cell. We also present some comparison between the particle scale model and a recent homogenized, electrode-scale model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信