克莱因瓶上的二聚体和伊辛模型

IF 1.5 Q2 PHYSICS, MATHEMATICAL
David Cimasoni
{"title":"克莱因瓶上的二聚体和伊辛模型","authors":"David Cimasoni","doi":"10.4171/aihpd/166","DOIUrl":null,"url":null,"abstract":"We study the dimer and Ising models on a planar weighted graph with periodic-antiperiodic boundary conditions, i.e. a graph $\\Gamma$ in the Klein bottle $K$. Let $\\Gamma_{mn}$ denote the graph obtained by pasting $m$ rows and $n$ columns of copies of $\\Gamma$, which embeds in $K$ for $n$ odd and in the torus $\\mathbb{T}^2$ for $n$ even. We compute the dimer partition function $Z_{mn}$ of $\\Gamma_{mn}$ for $n$ odd, in terms of the well-known characteristic polynomial $P$ of $\\Gamma_{12}\\subset\\mathbb{T}^2$ together with a new characteristic polynomial $R$ of $\\Gamma\\subset K$. Using this result together with work of Kenyon, Sun and Wilson [arXiv:1310.2603], we show that in the bipartite case, this partition function has the asymptotic expansion $\\log Z_{mn}=mn f_0/2 +\\mathrm{fsc}+o(1)$, where $f_0$ is the bulk free energy for $\\Gamma_{12}\\subset\\mathbb{T}^2$ and $\\mathrm{fsc}$ an explicit finite-size correction term. The remarkable feature of this later term is its universality: it does not depend on the graph $\\Gamma$, but only on the zeros of $P$ on the unit torus and on an explicit (purely imaginary) shape parameter. A similar expansion is also obtained in the non-bipartite case, assuming a conjectural condition on the zeros of $P$. We then show that this asymptotic expansion holds for the Ising partition function as well, with $\\mathrm{fsc}$ taking a particularly simple form: it vanishes in the subcritical regime, is equal to $\\log(2)$ in the supercritical regime, and to an explicit function of the shape parameter at criticality. These results are in full agreement with the conformal field theory predictions of Blote, Cardy and Nightingale.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The dimer and Ising models on Klein bottles\",\"authors\":\"David Cimasoni\",\"doi\":\"10.4171/aihpd/166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dimer and Ising models on a planar weighted graph with periodic-antiperiodic boundary conditions, i.e. a graph $\\\\Gamma$ in the Klein bottle $K$. Let $\\\\Gamma_{mn}$ denote the graph obtained by pasting $m$ rows and $n$ columns of copies of $\\\\Gamma$, which embeds in $K$ for $n$ odd and in the torus $\\\\mathbb{T}^2$ for $n$ even. We compute the dimer partition function $Z_{mn}$ of $\\\\Gamma_{mn}$ for $n$ odd, in terms of the well-known characteristic polynomial $P$ of $\\\\Gamma_{12}\\\\subset\\\\mathbb{T}^2$ together with a new characteristic polynomial $R$ of $\\\\Gamma\\\\subset K$. Using this result together with work of Kenyon, Sun and Wilson [arXiv:1310.2603], we show that in the bipartite case, this partition function has the asymptotic expansion $\\\\log Z_{mn}=mn f_0/2 +\\\\mathrm{fsc}+o(1)$, where $f_0$ is the bulk free energy for $\\\\Gamma_{12}\\\\subset\\\\mathbb{T}^2$ and $\\\\mathrm{fsc}$ an explicit finite-size correction term. The remarkable feature of this later term is its universality: it does not depend on the graph $\\\\Gamma$, but only on the zeros of $P$ on the unit torus and on an explicit (purely imaginary) shape parameter. A similar expansion is also obtained in the non-bipartite case, assuming a conjectural condition on the zeros of $P$. We then show that this asymptotic expansion holds for the Ising partition function as well, with $\\\\mathrm{fsc}$ taking a particularly simple form: it vanishes in the subcritical regime, is equal to $\\\\log(2)$ in the supercritical regime, and to an explicit function of the shape parameter at criticality. These results are in full agreement with the conformal field theory predictions of Blote, Cardy and Nightingale.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了具有周期性-反周期边界条件的平面加权图上的二聚体和Ising模型,即克莱因瓶$K$中的图$\Gamma$。设$\Gamma_{mn}$表示通过粘贴$\Gamma$副本的$m$行和$n$列获得的图形,对于$n$奇数嵌入到$K$中,对于$n$偶数嵌入到圆环$\mathbb{T}^2$中。我们根据众所周知的特征多项式$P$ ($\Gamma_{12}\subset\mathbb{T}^2$)和一个新的特征多项式$R$ ($\Gamma\subset K$)来计算$n$奇数的二聚体配分函数$Z_{mn}$ ($\Gamma_{mn}$)。利用这一结果和Kenyon, Sun和Wilson [arXiv:1310.2603]的工作,我们证明了在二部情况下,该配分函数具有渐近展开$\log Z_{mn}=mn f_0/2 +\mathrm{fsc}+o(1)$,其中$f_0$是$\Gamma_{12}\subset\mathbb{T}^2$的总体自由能,$\mathrm{fsc}$是一个显式有限大小的修正项。后一项的显著特征是它的通用性:它不依赖于图形$\Gamma$,而只依赖于单位环面上$P$的零点和一个显式的(纯虚的)形状参数。在非二部情况下也得到了类似的展开式,在$P$的零点上假设了一个猜想条件。然后,我们证明这种渐近展开也适用于伊辛配分函数,其中$\mathrm{fsc}$的形式特别简单:它在亚临界状态下消失,在超临界状态下等于$\log(2)$,在临界状态下等于形状参数的显式函数。这些结果与Blote、Cardy和Nightingale的共形场论预测完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dimer and Ising models on Klein bottles
We study the dimer and Ising models on a planar weighted graph with periodic-antiperiodic boundary conditions, i.e. a graph $\Gamma$ in the Klein bottle $K$. Let $\Gamma_{mn}$ denote the graph obtained by pasting $m$ rows and $n$ columns of copies of $\Gamma$, which embeds in $K$ for $n$ odd and in the torus $\mathbb{T}^2$ for $n$ even. We compute the dimer partition function $Z_{mn}$ of $\Gamma_{mn}$ for $n$ odd, in terms of the well-known characteristic polynomial $P$ of $\Gamma_{12}\subset\mathbb{T}^2$ together with a new characteristic polynomial $R$ of $\Gamma\subset K$. Using this result together with work of Kenyon, Sun and Wilson [arXiv:1310.2603], we show that in the bipartite case, this partition function has the asymptotic expansion $\log Z_{mn}=mn f_0/2 +\mathrm{fsc}+o(1)$, where $f_0$ is the bulk free energy for $\Gamma_{12}\subset\mathbb{T}^2$ and $\mathrm{fsc}$ an explicit finite-size correction term. The remarkable feature of this later term is its universality: it does not depend on the graph $\Gamma$, but only on the zeros of $P$ on the unit torus and on an explicit (purely imaginary) shape parameter. A similar expansion is also obtained in the non-bipartite case, assuming a conjectural condition on the zeros of $P$. We then show that this asymptotic expansion holds for the Ising partition function as well, with $\mathrm{fsc}$ taking a particularly simple form: it vanishes in the subcritical regime, is equal to $\log(2)$ in the supercritical regime, and to an explicit function of the shape parameter at criticality. These results are in full agreement with the conformal field theory predictions of Blote, Cardy and Nightingale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信