除数链上算术函数幂矩阵的可整除性

IF 0.4 4区 数学 Q4 MATHEMATICS
Long Chen, Zongbing Lin, Qianrong Tan
{"title":"除数链上算术函数幂矩阵的可整除性","authors":"Long Chen, Zongbing Lin, Qianrong Tan","doi":"10.1142/s1005386722000396","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], [Formula: see text] and [Formula: see text] be positive integers with[Formula: see text], [Formula: see text] be an integer-valued arithmetic function, and the set [Formula: see text] of [Formula: see text] distinct positive integers be a divisor chain such that [Formula: see text]. We first show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the greatest common divisor of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the GCD matrix [Formula: see text] in the ring [Formula: see text] of [Formula: see text] matrices over integers if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Consequently, we show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the least common multiple of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with[Formula: see text]. Finally, we prove that the matrix [Formula: see text] divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Our results extend and strengthen the theorems of Hong obtained in 2008.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"15 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisibility Properties of Power Matrices Associated with Arithmetic Functions on a Divisor Chain\",\"authors\":\"Long Chen, Zongbing Lin, Qianrong Tan\",\"doi\":\"10.1142/s1005386722000396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text], [Formula: see text] and [Formula: see text] be positive integers with[Formula: see text], [Formula: see text] be an integer-valued arithmetic function, and the set [Formula: see text] of [Formula: see text] distinct positive integers be a divisor chain such that [Formula: see text]. We first show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the greatest common divisor of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the GCD matrix [Formula: see text] in the ring [Formula: see text] of [Formula: see text] matrices over integers if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Consequently, we show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the least common multiple of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with[Formula: see text]. Finally, we prove that the matrix [Formula: see text] divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Our results extend and strengthen the theorems of Hong obtained in 2008.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000396\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000396","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]、[公式:见文]和[公式:见文]为具有[公式:见文]的正整数,[公式:见文]为整数算术函数,且[公式:见文]的不同正整数集[公式:见文]为一个除数链,使得[公式:见文]。我们首先证明,矩阵[公式:见文]在[公式:见文]和[公式:见文]的[公式:见文]的最大公约数的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]项的[公式:见文]的环中除[公式:见文]的GCD矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]除任意整数[公式:见文]的[公式:见文][公式:见文]。[公式:见文本]。因此,我们证明,矩阵[公式:见文]以[公式:见文]和[公式:见文]的最小公倍数[公式:见文]的[公式:见文]的[公式:见文]为其[公式:见文]条目的[公式:见文]除环中的矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]除任意整数[公式:见文]与[公式:见文]的[公式:见文]。最后,我们证明了矩阵[公式:见文]在环[公式:见文]中除矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]对任意整数[公式:见文]与[公式:见文]相除。我们的结果推广并加强了Hong在2008年得到的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisibility Properties of Power Matrices Associated with Arithmetic Functions on a Divisor Chain
Let [Formula: see text], [Formula: see text] and [Formula: see text] be positive integers with[Formula: see text], [Formula: see text] be an integer-valued arithmetic function, and the set [Formula: see text] of [Formula: see text] distinct positive integers be a divisor chain such that [Formula: see text]. We first show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the greatest common divisor of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the GCD matrix [Formula: see text] in the ring [Formula: see text] of [Formula: see text] matrices over integers if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Consequently, we show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the least common multiple of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with[Formula: see text]. Finally, we prove that the matrix [Formula: see text] divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Our results extend and strengthen the theorems of Hong obtained in 2008.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信