基于模型的汽车EPGS系统参数估计故障检测

Alia Salah, O. A. Mohareb, H. Reuss
{"title":"基于模型的汽车EPGS系统参数估计故障检测","authors":"Alia Salah, O. A. Mohareb, H. Reuss","doi":"10.1109/OPTIM-ACEMP50812.2021.9590069","DOIUrl":null,"url":null,"abstract":"This paper presents a unique method for self- fault detection and diagnosis in automotive electric power generation system. The presented model-based approach using parameter estimation allows detecting the change in the dynamic behavior of the main variables in correlation to the presence of fault. The approach employs the available measurements in the vehicle to detect the mechanical faults and enables self-diagnostic and communication on a higher level. The results of this approach are compared with the ones provided of the conventional signal-based methods to show the discrepancies and provide a proof of concept for further analysis.","PeriodicalId":32117,"journal":{"name":"Bioma","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model-Based Fault Detection Using Parameter Estimation in Automotive EPGS Systems\",\"authors\":\"Alia Salah, O. A. Mohareb, H. Reuss\",\"doi\":\"10.1109/OPTIM-ACEMP50812.2021.9590069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unique method for self- fault detection and diagnosis in automotive electric power generation system. The presented model-based approach using parameter estimation allows detecting the change in the dynamic behavior of the main variables in correlation to the presence of fault. The approach employs the available measurements in the vehicle to detect the mechanical faults and enables self-diagnostic and communication on a higher level. The results of this approach are compared with the ones provided of the conventional signal-based methods to show the discrepancies and provide a proof of concept for further analysis.\",\"PeriodicalId\":32117,\"journal\":{\"name\":\"Bioma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OPTIM-ACEMP50812.2021.9590069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM-ACEMP50812.2021.9590069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种独特的汽车发电系统自故障检测与诊断方法。所提出的基于模型的方法使用参数估计可以检测与故障存在相关的主要变量的动态行为的变化。该方法利用车辆中可用的测量方法来检测机械故障,并实现更高级别的自我诊断和通信。将该方法的结果与传统的基于信号的方法提供的结果进行比较,以显示差异,并为进一步分析提供概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Fault Detection Using Parameter Estimation in Automotive EPGS Systems
This paper presents a unique method for self- fault detection and diagnosis in automotive electric power generation system. The presented model-based approach using parameter estimation allows detecting the change in the dynamic behavior of the main variables in correlation to the presence of fault. The approach employs the available measurements in the vehicle to detect the mechanical faults and enables self-diagnostic and communication on a higher level. The results of this approach are compared with the ones provided of the conventional signal-based methods to show the discrepancies and provide a proof of concept for further analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信