PET压扁瓶视觉检测的合成数据生成

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Vitālijs Feščenko, Jānis Ārents, R. Kadikis
{"title":"PET压扁瓶视觉检测的合成数据生成","authors":"Vitālijs Feščenko, Jānis Ārents, R. Kadikis","doi":"10.3390/make5010002","DOIUrl":null,"url":null,"abstract":"Polyethylene terephthalate (PET) bottle recycling is a highly automated task; however, manual quality control is required due to inefficiencies of the process. In this paper, we explore automation of the quality control sub-task, namely visual bottle detection, using convolutional neural network (CNN)-based methods and synthetic generation of labelled training data. We propose a synthetic generation pipeline tailored for transparent and crushed PET bottle detection; however, it can also be applied to undeformed bottles if the viewpoint is set from above. We conduct various experiments on CNNs to compare the quality of real and synthetic data, show that synthetic data can reduce the amount of real data required and experiment with the combination of both datasets in multiple ways to obtain the best performance.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"88 1","pages":"14-28"},"PeriodicalIF":4.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthetic Data Generation for Visual Detection of Flattened PET Bottles\",\"authors\":\"Vitālijs Feščenko, Jānis Ārents, R. Kadikis\",\"doi\":\"10.3390/make5010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethylene terephthalate (PET) bottle recycling is a highly automated task; however, manual quality control is required due to inefficiencies of the process. In this paper, we explore automation of the quality control sub-task, namely visual bottle detection, using convolutional neural network (CNN)-based methods and synthetic generation of labelled training data. We propose a synthetic generation pipeline tailored for transparent and crushed PET bottle detection; however, it can also be applied to undeformed bottles if the viewpoint is set from above. We conduct various experiments on CNNs to compare the quality of real and synthetic data, show that synthetic data can reduce the amount of real data required and experiment with the combination of both datasets in multiple ways to obtain the best performance.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"88 1\",\"pages\":\"14-28\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make5010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

聚对苯二甲酸乙二醇酯(PET)瓶回收是一项高度自动化的任务;然而,由于流程效率低下,需要人工质量控制。在本文中,我们探索了质量控制子任务的自动化,即视觉瓶检测,使用基于卷积神经网络(CNN)的方法和合成生成标记训练数据。我们提出了一种适合透明和破碎PET瓶检测的合成生成管道;然而,如果从上面设置视点,它也可以应用于未变形的瓶子。我们在cnn上进行了各种实验,比较了真实数据和合成数据的质量,表明合成数据可以减少对真实数据的需求,并以多种方式将两种数据集组合在一起进行实验,以获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Data Generation for Visual Detection of Flattened PET Bottles
Polyethylene terephthalate (PET) bottle recycling is a highly automated task; however, manual quality control is required due to inefficiencies of the process. In this paper, we explore automation of the quality control sub-task, namely visual bottle detection, using convolutional neural network (CNN)-based methods and synthetic generation of labelled training data. We propose a synthetic generation pipeline tailored for transparent and crushed PET bottle detection; however, it can also be applied to undeformed bottles if the viewpoint is set from above. We conduct various experiments on CNNs to compare the quality of real and synthetic data, show that synthetic data can reduce the amount of real data required and experiment with the combination of both datasets in multiple ways to obtain the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信