基于各向异性扩散的次模优化分布共分割

Gunhee Kim, E. Xing, Li Fei-Fei, T. Kanade
{"title":"基于各向异性扩散的次模优化分布共分割","authors":"Gunhee Kim, E. Xing, Li Fei-Fei, T. Kanade","doi":"10.1109/ICCV.2011.6126239","DOIUrl":null,"url":null,"abstract":"The saliency of regions or objects in an image can be significantly boosted if they recur in multiple images. Leveraging this idea, cosegmentation jointly segments common regions from multiple images. In this paper, we propose CoSand, a distributed cosegmentation approach for a highly variable large-scale image collection. The segmentation task is modeled by temperature maximization on anisotropic heat diffusion, of which the temperature maximization with finite K heat sources corresponds to a K-way segmentation that maximizes the segmentation confidence of every pixel in an image. We show that our method takes advantage of a strong theoretic property in that the temperature under linear anisotropic diffusion is a submodular function; therefore, a greedy algorithm guarantees at least a constant factor approximation to the optimal solution for temperature maximization. Our theoretic result is successfully applied to scalable cosegmentation as well as diversity ranking and single-image segmentation. We evaluate CoSand on MSRC and ImageNet datasets, and show its competence both in competitive performance over previous work, and in much superior scalability.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"16 1","pages":"169-176"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"311","resultStr":"{\"title\":\"Distributed cosegmentation via submodular optimization on anisotropic diffusion\",\"authors\":\"Gunhee Kim, E. Xing, Li Fei-Fei, T. Kanade\",\"doi\":\"10.1109/ICCV.2011.6126239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The saliency of regions or objects in an image can be significantly boosted if they recur in multiple images. Leveraging this idea, cosegmentation jointly segments common regions from multiple images. In this paper, we propose CoSand, a distributed cosegmentation approach for a highly variable large-scale image collection. The segmentation task is modeled by temperature maximization on anisotropic heat diffusion, of which the temperature maximization with finite K heat sources corresponds to a K-way segmentation that maximizes the segmentation confidence of every pixel in an image. We show that our method takes advantage of a strong theoretic property in that the temperature under linear anisotropic diffusion is a submodular function; therefore, a greedy algorithm guarantees at least a constant factor approximation to the optimal solution for temperature maximization. Our theoretic result is successfully applied to scalable cosegmentation as well as diversity ranking and single-image segmentation. We evaluate CoSand on MSRC and ImageNet datasets, and show its competence both in competitive performance over previous work, and in much superior scalability.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"16 1\",\"pages\":\"169-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"311\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 311

摘要

如果图像中的区域或对象在多个图像中重复出现,则可以显著增强其显著性。利用这一思想,共分割将多个图像中的共同区域分割出来。在本文中,我们提出了CoSand,一种用于高度可变的大规模图像集合的分布式共分割方法。该分割任务采用各向异性热扩散的温度最大化模型,其中有限K个热源的温度最大化对应于K-way分割,使图像中每个像素的分割置信度最大化。我们的方法利用了一个很强的理论性质,即线性各向异性扩散下的温度是一个次模函数;因此,贪心算法至少保证了温度最大化最优解的常数因子近似值。我们的理论结果已成功地应用于可扩展共分割、多样性排序和单幅图像分割。我们在MSRC和ImageNet数据集上对CoSand进行了评估,并展示了它在竞争性能和可扩展性方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed cosegmentation via submodular optimization on anisotropic diffusion
The saliency of regions or objects in an image can be significantly boosted if they recur in multiple images. Leveraging this idea, cosegmentation jointly segments common regions from multiple images. In this paper, we propose CoSand, a distributed cosegmentation approach for a highly variable large-scale image collection. The segmentation task is modeled by temperature maximization on anisotropic heat diffusion, of which the temperature maximization with finite K heat sources corresponds to a K-way segmentation that maximizes the segmentation confidence of every pixel in an image. We show that our method takes advantage of a strong theoretic property in that the temperature under linear anisotropic diffusion is a submodular function; therefore, a greedy algorithm guarantees at least a constant factor approximation to the optimal solution for temperature maximization. Our theoretic result is successfully applied to scalable cosegmentation as well as diversity ranking and single-image segmentation. We evaluate CoSand on MSRC and ImageNet datasets, and show its competence both in competitive performance over previous work, and in much superior scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信