{"title":"不同黏度比的粘塑性和牛顿流体双层等温压延的数值分析","authors":"M. Ilyas, M. Zahid, M. Mushtaq","doi":"10.1177/87560879221093902","DOIUrl":null,"url":null,"abstract":"Co-extruded multi-layer plastic sheets and polymer structures formed by calendering process or by cold rolling are widely used in the packaging industry and thin-film transistor manufacturing. The different materials are extruded from separate extruders into the single sheet die which delivers a multi-layer sheet with uniform layer thickness at die exit. This multi-layer sheet is then stretched between counter-rotating rolls to obtain final uniform multi-layer sheet. There are many factors which can influence this process. In this article, calendering a single layer Newtonian or Non-Newtonian material has been extended to analyze a two-layer calendering process for an incompressible Viscoplastic and Newtonian fluids as upper and lower layers with different viscosity ratios. To simplify the equations of motion, the lubrication approximation theory is used. The expressions of non-dimensional pressure gradient, pressure and velocity distribution of both layers are obtained analytically by using proper no slip boundary conditions and dimensionless variables. The dimensionless detachment point is approximated by Regula-Falsi (false position) method. The important engineering factors including detachment point, calendered sheet thickness, roll separation force, power input by rolls, torque on each roll, and adiabatic temperature are all computed. In addition, how the viscosity ratios and viscoplastic casson parameter affect these factors have been investigated. Moreover all established results in literature for single layer calendering Newtonian fluids are also validated at casson parameter β tending towards infinity.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"43 1","pages":"416 - 437"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of two-layered isothermal calendering of viscoplastic and Newtonian fluids with different viscosity ratios\",\"authors\":\"M. Ilyas, M. Zahid, M. Mushtaq\",\"doi\":\"10.1177/87560879221093902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-extruded multi-layer plastic sheets and polymer structures formed by calendering process or by cold rolling are widely used in the packaging industry and thin-film transistor manufacturing. The different materials are extruded from separate extruders into the single sheet die which delivers a multi-layer sheet with uniform layer thickness at die exit. This multi-layer sheet is then stretched between counter-rotating rolls to obtain final uniform multi-layer sheet. There are many factors which can influence this process. In this article, calendering a single layer Newtonian or Non-Newtonian material has been extended to analyze a two-layer calendering process for an incompressible Viscoplastic and Newtonian fluids as upper and lower layers with different viscosity ratios. To simplify the equations of motion, the lubrication approximation theory is used. The expressions of non-dimensional pressure gradient, pressure and velocity distribution of both layers are obtained analytically by using proper no slip boundary conditions and dimensionless variables. The dimensionless detachment point is approximated by Regula-Falsi (false position) method. The important engineering factors including detachment point, calendered sheet thickness, roll separation force, power input by rolls, torque on each roll, and adiabatic temperature are all computed. In addition, how the viscosity ratios and viscoplastic casson parameter affect these factors have been investigated. Moreover all established results in literature for single layer calendering Newtonian fluids are also validated at casson parameter β tending towards infinity.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"43 1\",\"pages\":\"416 - 437\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221093902\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221093902","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Numerical analysis of two-layered isothermal calendering of viscoplastic and Newtonian fluids with different viscosity ratios
Co-extruded multi-layer plastic sheets and polymer structures formed by calendering process or by cold rolling are widely used in the packaging industry and thin-film transistor manufacturing. The different materials are extruded from separate extruders into the single sheet die which delivers a multi-layer sheet with uniform layer thickness at die exit. This multi-layer sheet is then stretched between counter-rotating rolls to obtain final uniform multi-layer sheet. There are many factors which can influence this process. In this article, calendering a single layer Newtonian or Non-Newtonian material has been extended to analyze a two-layer calendering process for an incompressible Viscoplastic and Newtonian fluids as upper and lower layers with different viscosity ratios. To simplify the equations of motion, the lubrication approximation theory is used. The expressions of non-dimensional pressure gradient, pressure and velocity distribution of both layers are obtained analytically by using proper no slip boundary conditions and dimensionless variables. The dimensionless detachment point is approximated by Regula-Falsi (false position) method. The important engineering factors including detachment point, calendered sheet thickness, roll separation force, power input by rolls, torque on each roll, and adiabatic temperature are all computed. In addition, how the viscosity ratios and viscoplastic casson parameter affect these factors have been investigated. Moreover all established results in literature for single layer calendering Newtonian fluids are also validated at casson parameter β tending towards infinity.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).