N. Ahmad, Erni Salasia Fitri, Afan Wijaya, Amri Amri, M. Mardiyanto, I. Royani, A. Lesbani
{"title":"复合基锌/铝层状双氢氧化物对二苯并噻吩的催化氧化脱硫","authors":"N. Ahmad, Erni Salasia Fitri, Afan Wijaya, Amri Amri, M. Mardiyanto, I. Royani, A. Lesbani","doi":"10.9767/bcrec.17.4.15335.733-742","DOIUrl":null,"url":null,"abstract":"In this study, the Zn/Al-TiO2 and Zn/Al-ZnO was successfully synthesized. The catalysts were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDS). The typical diffraction peaks of Zn/Al-LDH, TiO2, and ZnO still appear in the Zn/Al-TiO2 and Zn/Al-ZnO composites, indicating that the composite preparation did not change the form of precursors. FTIR spectra of Zn/Al-TiO2 and Zn/Al-ZnO showed absorption band at 3448, 1627, 1381, 832, 779, and 686 cm-1. The catalysts have an irregular structure where the percent mass of Ti and Zn on the composite at 10.6% and 55.6%, respectively. The acidity of Zn/Al-LDH composite increased after being composed with TiO2 and ZnO. The percentage conversion dibenzothiophene on Zn/Al-ZnO, Zn/Al-TiO2, ZnO, Zn/Al-LDH, and TiO2 was 99.38%, 96.01%, 95.36%, 94.71%, and 91.92%, respectively. The heterogeneous systems of catalytic reaction was used for reusability. After 3 cycles catalytic reactions at 50 oC for 30 min, the percentage conversion of dibenzothiophene on Zn/Al-LDH, TiO2, ZnO, Zn/Al-TiO2, and Zn/Al-ZnO were 77.42%, 83.19%, 82.34%, 84.91%, and 89.71 %, respectively. The composites of Zn/Al-TiO2 and Zn/Al-ZnO have better reusability test than Zn/Al-LDH, TiO2, and ZnO, which proofing that Zn/Al-TiO2 and Zn/Al-ZnO have a stable structure. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Composite Based Zn/Al Layered Double Hydroxide\",\"authors\":\"N. Ahmad, Erni Salasia Fitri, Afan Wijaya, Amri Amri, M. Mardiyanto, I. Royani, A. Lesbani\",\"doi\":\"10.9767/bcrec.17.4.15335.733-742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the Zn/Al-TiO2 and Zn/Al-ZnO was successfully synthesized. The catalysts were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDS). The typical diffraction peaks of Zn/Al-LDH, TiO2, and ZnO still appear in the Zn/Al-TiO2 and Zn/Al-ZnO composites, indicating that the composite preparation did not change the form of precursors. FTIR spectra of Zn/Al-TiO2 and Zn/Al-ZnO showed absorption band at 3448, 1627, 1381, 832, 779, and 686 cm-1. The catalysts have an irregular structure where the percent mass of Ti and Zn on the composite at 10.6% and 55.6%, respectively. The acidity of Zn/Al-LDH composite increased after being composed with TiO2 and ZnO. The percentage conversion dibenzothiophene on Zn/Al-ZnO, Zn/Al-TiO2, ZnO, Zn/Al-LDH, and TiO2 was 99.38%, 96.01%, 95.36%, 94.71%, and 91.92%, respectively. The heterogeneous systems of catalytic reaction was used for reusability. After 3 cycles catalytic reactions at 50 oC for 30 min, the percentage conversion of dibenzothiophene on Zn/Al-LDH, TiO2, ZnO, Zn/Al-TiO2, and Zn/Al-ZnO were 77.42%, 83.19%, 82.34%, 84.91%, and 89.71 %, respectively. The composites of Zn/Al-TiO2 and Zn/Al-ZnO have better reusability test than Zn/Al-LDH, TiO2, and ZnO, which proofing that Zn/Al-TiO2 and Zn/Al-ZnO have a stable structure. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.17.4.15335.733-742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.4.15335.733-742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Composite Based Zn/Al Layered Double Hydroxide
In this study, the Zn/Al-TiO2 and Zn/Al-ZnO was successfully synthesized. The catalysts were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDS). The typical diffraction peaks of Zn/Al-LDH, TiO2, and ZnO still appear in the Zn/Al-TiO2 and Zn/Al-ZnO composites, indicating that the composite preparation did not change the form of precursors. FTIR spectra of Zn/Al-TiO2 and Zn/Al-ZnO showed absorption band at 3448, 1627, 1381, 832, 779, and 686 cm-1. The catalysts have an irregular structure where the percent mass of Ti and Zn on the composite at 10.6% and 55.6%, respectively. The acidity of Zn/Al-LDH composite increased after being composed with TiO2 and ZnO. The percentage conversion dibenzothiophene on Zn/Al-ZnO, Zn/Al-TiO2, ZnO, Zn/Al-LDH, and TiO2 was 99.38%, 96.01%, 95.36%, 94.71%, and 91.92%, respectively. The heterogeneous systems of catalytic reaction was used for reusability. After 3 cycles catalytic reactions at 50 oC for 30 min, the percentage conversion of dibenzothiophene on Zn/Al-LDH, TiO2, ZnO, Zn/Al-TiO2, and Zn/Al-ZnO were 77.42%, 83.19%, 82.34%, 84.91%, and 89.71 %, respectively. The composites of Zn/Al-TiO2 and Zn/Al-ZnO have better reusability test than Zn/Al-LDH, TiO2, and ZnO, which proofing that Zn/Al-TiO2 and Zn/Al-ZnO have a stable structure. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).