熔合线裂纹失效评估的J-Q-M方法:双材料和三材料模型

C. Thaulow, Zhiliang Zhang, Ø. Ranestad, M. Hauge
{"title":"熔合线裂纹失效评估的J-Q-M方法:双材料和三材料模型","authors":"C. Thaulow, Zhiliang Zhang, Ø. Ranestad, M. Hauge","doi":"10.1520/STP13398S","DOIUrl":null,"url":null,"abstract":"The theoretical background for the J-Q-M approach for quantifying the constraint in weldments for fusion line cracks is presented. In this model, Q quantifies the geometry effects and M the material mismatch effects. Initially the approach was developed for a two-material modified boundary level (MBL) model, but later was extended to include three materials: weld metal, heat-affected zone and base material, and more realistic specimen geometries. The analysis with MBL models showed that the effect of mismatch was rather independent of the T-stress for both bi- and tri-material models, indicating that Q and M could be treated independently. However, analysis of fracture mechanics tension specimens made of three materials revealed that the mismatch effect in some cases could depend on the geometry effects. New calculations have demonstrated that the dependence/independence is related to load level, ratio of mismatch, and the local geometry.","PeriodicalId":8583,"journal":{"name":"ASTM special technical publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"J-Q-M Approach for Failure Assessment of Fusion Line Cracks: Two-Material and Three-Material Models\",\"authors\":\"C. Thaulow, Zhiliang Zhang, Ø. Ranestad, M. Hauge\",\"doi\":\"10.1520/STP13398S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theoretical background for the J-Q-M approach for quantifying the constraint in weldments for fusion line cracks is presented. In this model, Q quantifies the geometry effects and M the material mismatch effects. Initially the approach was developed for a two-material modified boundary level (MBL) model, but later was extended to include three materials: weld metal, heat-affected zone and base material, and more realistic specimen geometries. The analysis with MBL models showed that the effect of mismatch was rather independent of the T-stress for both bi- and tri-material models, indicating that Q and M could be treated independently. However, analysis of fracture mechanics tension specimens made of three materials revealed that the mismatch effect in some cases could depend on the geometry effects. New calculations have demonstrated that the dependence/independence is related to load level, ratio of mismatch, and the local geometry.\",\"PeriodicalId\":8583,\"journal\":{\"name\":\"ASTM special technical publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTM special technical publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/STP13398S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTM special technical publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/STP13398S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

介绍了用J-Q-M方法量化熔合线裂纹约束的理论背景。在这个模型中,Q量化几何效应,M量化材料错配效应。最初,该方法是针对两种材料的修正边界水平(MBL)模型开发的,但后来扩展到包括三种材料:焊接金属,热影响区和基材,以及更真实的试样几何形状。MBL模型分析表明,无论是双材料模型还是三材料模型,错配效应都与t应力无关,表明Q和M可以独立处理。然而,对三种材料的断裂力学拉伸试样的分析表明,在某些情况下,失配效应可能取决于几何效应。新的计算表明,依赖性/独立性与负载水平、失配率和局部几何形状有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
J-Q-M Approach for Failure Assessment of Fusion Line Cracks: Two-Material and Three-Material Models
The theoretical background for the J-Q-M approach for quantifying the constraint in weldments for fusion line cracks is presented. In this model, Q quantifies the geometry effects and M the material mismatch effects. Initially the approach was developed for a two-material modified boundary level (MBL) model, but later was extended to include three materials: weld metal, heat-affected zone and base material, and more realistic specimen geometries. The analysis with MBL models showed that the effect of mismatch was rather independent of the T-stress for both bi- and tri-material models, indicating that Q and M could be treated independently. However, analysis of fracture mechanics tension specimens made of three materials revealed that the mismatch effect in some cases could depend on the geometry effects. New calculations have demonstrated that the dependence/independence is related to load level, ratio of mismatch, and the local geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信