带最终状态约束的最优控制问题的动态规划实现

O. Sundstrom, D. Ambühl, L. Guzzella
{"title":"带最终状态约束的最优控制问题的动态规划实现","authors":"O. Sundstrom, D. Ambühl, L. Guzzella","doi":"10.2516/OGST/2009020","DOIUrl":null,"url":null,"abstract":"In this paper we present issues related to the implementation of dynamic programming for optimal control of a one-dimensional dynamic model, such as the hybrid electric vehicle energy management problem. A study on the resolution of the discretized state space emphasizes the need for careful implementation. A new method is presented to treat numerical issues appropriately. In particular, the method deals with numerical problems that arise due to high gradients in the optimal cost-to-go function. These gradients mainly occur on the border of the feasible state region. The proposed method not only enhances the accuracy of the final global optimum but also allows for a reduction of the state-space resolution with maintained accuracy. The latter substantially reduces the computational effort to calculate the global optimum. This allows for further applications of dynamic programming for hybrid electric vehicles such as extensive parameter studies.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"54 1","pages":"91-102"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"236","resultStr":"{\"title\":\"On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints\",\"authors\":\"O. Sundstrom, D. Ambühl, L. Guzzella\",\"doi\":\"10.2516/OGST/2009020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present issues related to the implementation of dynamic programming for optimal control of a one-dimensional dynamic model, such as the hybrid electric vehicle energy management problem. A study on the resolution of the discretized state space emphasizes the need for careful implementation. A new method is presented to treat numerical issues appropriately. In particular, the method deals with numerical problems that arise due to high gradients in the optimal cost-to-go function. These gradients mainly occur on the border of the feasible state region. The proposed method not only enhances the accuracy of the final global optimum but also allows for a reduction of the state-space resolution with maintained accuracy. The latter substantially reduces the computational effort to calculate the global optimum. This allows for further applications of dynamic programming for hybrid electric vehicles such as extensive parameter studies.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"54 1\",\"pages\":\"91-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"236\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2009020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 236

摘要

本文以混合动力汽车的能量管理问题为例,提出了一维动态模型最优控制的动态规划实现方法。对离散状态空间的解析进行了研究,强调需要仔细实现。提出了一种合理处理数值问题的新方法。特别地,该方法处理了由于最优代价函数的高梯度而引起的数值问题。这些梯度主要出现在可行状态区的边界上。该方法不仅提高了最终全局最优解的精度,而且可以在保持精度的情况下降低状态空间分辨率。后者大大减少了计算全局最优的计算工作量。这使得动态规划进一步应用于混合动力电动汽车,如广泛的参数研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints
In this paper we present issues related to the implementation of dynamic programming for optimal control of a one-dimensional dynamic model, such as the hybrid electric vehicle energy management problem. A study on the resolution of the discretized state space emphasizes the need for careful implementation. A new method is presented to treat numerical issues appropriately. In particular, the method deals with numerical problems that arise due to high gradients in the optimal cost-to-go function. These gradients mainly occur on the border of the feasible state region. The proposed method not only enhances the accuracy of the final global optimum but also allows for a reduction of the state-space resolution with maintained accuracy. The latter substantially reduces the computational effort to calculate the global optimum. This allows for further applications of dynamic programming for hybrid electric vehicles such as extensive parameter studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信