{"title":"针对转运中断风险的腹地-港口货运网络可靠规划","authors":"Lei Wang, Qing Liu","doi":"10.3846/transport.2022.17067","DOIUrl":null,"url":null,"abstract":"Many previous cases have shown that port operations are susceptible to disruptive events. This paper proposes 2-stage Stochastic Programming (SP) for port users to reliably plan the hinterland-port intermodal freight network with consideration of risk aversion in cost. Probabilistic disruptions of intermodal terminals are considered as scenario-specific. In the 1st stage, intermodal paths are selected to obtain proper network capacities. In the 2nd stage, cargo flows are assigned for each disruption scenario on the planed network. The 2-stage model is firstly formulated in a risk-neutral environment to achieve the minimum expectation of total cost. Then, the Mean-Risk (MR) framework is adopted by incorporating a risk measure tool called Conditional Value-at-Risk (CVaR) into the expectation model, so as to reduce the cost of worst-case disruption scenarios. Benders’ Decomposition (BD) is introduced to efficiently solve the exponential many problem. Some numerical experiments are performed under different risk aversion parameters. With this study, network planners can decide network capacities with reasonable redundancies to improve the freight reliability in a cost-effective way. The proposed method provides a simple approach for the planners to quantify their risk appetites in cost and to impose them in the planning process, hence to trade-off the Expected Cost (EC) and the worst-case cost.","PeriodicalId":23260,"journal":{"name":"Transport","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RELIABLE PLANNING OF HINTERLAND-PORT FREIGHT NETWORK AGAINST TRANSFER DISRUPTION RISKS\",\"authors\":\"Lei Wang, Qing Liu\",\"doi\":\"10.3846/transport.2022.17067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many previous cases have shown that port operations are susceptible to disruptive events. This paper proposes 2-stage Stochastic Programming (SP) for port users to reliably plan the hinterland-port intermodal freight network with consideration of risk aversion in cost. Probabilistic disruptions of intermodal terminals are considered as scenario-specific. In the 1st stage, intermodal paths are selected to obtain proper network capacities. In the 2nd stage, cargo flows are assigned for each disruption scenario on the planed network. The 2-stage model is firstly formulated in a risk-neutral environment to achieve the minimum expectation of total cost. Then, the Mean-Risk (MR) framework is adopted by incorporating a risk measure tool called Conditional Value-at-Risk (CVaR) into the expectation model, so as to reduce the cost of worst-case disruption scenarios. Benders’ Decomposition (BD) is introduced to efficiently solve the exponential many problem. Some numerical experiments are performed under different risk aversion parameters. With this study, network planners can decide network capacities with reasonable redundancies to improve the freight reliability in a cost-effective way. The proposed method provides a simple approach for the planners to quantify their risk appetites in cost and to impose them in the planning process, hence to trade-off the Expected Cost (EC) and the worst-case cost.\",\"PeriodicalId\":23260,\"journal\":{\"name\":\"Transport\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/transport.2022.17067\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/transport.2022.17067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
RELIABLE PLANNING OF HINTERLAND-PORT FREIGHT NETWORK AGAINST TRANSFER DISRUPTION RISKS
Many previous cases have shown that port operations are susceptible to disruptive events. This paper proposes 2-stage Stochastic Programming (SP) for port users to reliably plan the hinterland-port intermodal freight network with consideration of risk aversion in cost. Probabilistic disruptions of intermodal terminals are considered as scenario-specific. In the 1st stage, intermodal paths are selected to obtain proper network capacities. In the 2nd stage, cargo flows are assigned for each disruption scenario on the planed network. The 2-stage model is firstly formulated in a risk-neutral environment to achieve the minimum expectation of total cost. Then, the Mean-Risk (MR) framework is adopted by incorporating a risk measure tool called Conditional Value-at-Risk (CVaR) into the expectation model, so as to reduce the cost of worst-case disruption scenarios. Benders’ Decomposition (BD) is introduced to efficiently solve the exponential many problem. Some numerical experiments are performed under different risk aversion parameters. With this study, network planners can decide network capacities with reasonable redundancies to improve the freight reliability in a cost-effective way. The proposed method provides a simple approach for the planners to quantify their risk appetites in cost and to impose them in the planning process, hence to trade-off the Expected Cost (EC) and the worst-case cost.
期刊介绍:
At present, transport is one of the key branches playing a crucial role in the development of economy. Reliable and properly organized transport services are required for a professional performance of industry, construction and agriculture. The public mood and efficiency of work also largely depend on the valuable functions of a carefully chosen transport system. A steady increase in transportation is accompanied by growing demands for a higher quality of transport services and optimum efficiency of transport performance. Currently, joint efforts taken by the transport experts and governing institutions of the country are required to develop and enhance the performance of the national transport system conducting theoretical and empirical research.
TRANSPORT is an international peer-reviewed journal covering main aspects of transport and providing a source of information for the engineer and the applied scientist.
The journal TRANSPORT publishes articles in the fields of:
transport policy;
fundamentals of the transport system;
technology for carrying passengers and freight using road, railway, inland waterways, sea and air transport;
technology for multimodal transportation and logistics;
loading technology;
roads, railways;
airports, ports, transport terminals;
traffic safety and environment protection;
design, manufacture and exploitation of motor vehicles;
pipeline transport;
transport energetics;
fuels, lubricants and maintenance materials;
teamwork of customs and transport;
transport information technologies;
transport economics and management;
transport standards;
transport educology and history, etc.