广义倒钩边的对偶性,保持奇异集象和第一基本形式

IF 0.4 Q4 MATHEMATICS
Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada
{"title":"广义倒钩边的对偶性,保持奇异集象和第一基本形式","authors":"Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada","doi":"10.5427/jsing.2020.22e","DOIUrl":null,"url":null,"abstract":"In the second, fourth and fifth authors' previous work, a duality on generic real analytic cuspidal edges in the Euclidean 3-space $\\boldsymbol R^3$ preserving their singular set images and first fundamental forms, was given. Here, we call this an `isometric duality'. When the singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not congruent to the original one. In this paper, we show that this duality extends to generalized cuspidal edges in $\\boldsymbol R^3$, including cuspidal cross caps, and $5/2$-cuspidal edges. Moreover, we give several new geometric insights on this duality.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Duality on generalized cuspidal edges preserving singular set images and first fundamental forms\",\"authors\":\"Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada\",\"doi\":\"10.5427/jsing.2020.22e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the second, fourth and fifth authors' previous work, a duality on generic real analytic cuspidal edges in the Euclidean 3-space $\\\\boldsymbol R^3$ preserving their singular set images and first fundamental forms, was given. Here, we call this an `isometric duality'. When the singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not congruent to the original one. In this paper, we show that this duality extends to generalized cuspidal edges in $\\\\boldsymbol R^3$, including cuspidal cross caps, and $5/2$-cuspidal edges. Moreover, we give several new geometric insights on this duality.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

在第二、四、五作者之前的工作中,给出了欧几里得三维空间中一般实解析尖角边的对偶性,并保留了它们的奇异集象和第一基本形式。在这里,我们称之为“等距二象性”。当奇异集像不对称且不在一个平面上时,其对偶尖刀边与原尖刀边不一致。在本文中,我们证明了这种对偶性可以推广到$ $黑体符号R^3$上的广义倒尖边,包括倒尖交叉帽和$ $5/2$-倒尖边。此外,我们对这种对偶给出了几个新的几何见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality on generalized cuspidal edges preserving singular set images and first fundamental forms
In the second, fourth and fifth authors' previous work, a duality on generic real analytic cuspidal edges in the Euclidean 3-space $\boldsymbol R^3$ preserving their singular set images and first fundamental forms, was given. Here, we call this an `isometric duality'. When the singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not congruent to the original one. In this paper, we show that this duality extends to generalized cuspidal edges in $\boldsymbol R^3$, including cuspidal cross caps, and $5/2$-cuspidal edges. Moreover, we give several new geometric insights on this duality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信