使用话语水平评分和协方差建模的文本独立说话人验证

Ran D. Zilca
{"title":"使用话语水平评分和协方差建模的文本独立说话人验证","authors":"Ran D. Zilca","doi":"10.1109/TSA.2002.803419","DOIUrl":null,"url":null,"abstract":"This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called utterance level scoring (ULS), allows one to obtain a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a distortion measure. Subsequently, a distortion measure between the utterance covariance and the sample covariance of data taken from different speakers is used to normalize the score. Experimental results from the 2000 NIST speaker recognition evaluation are presented for ULS, used with different distortion measures, and for a Gaussian mixture model (GMM) system. The results indicate that ULS as a viable alternative to GMM whenever the computational complexity and verification accuracy needs to be traded.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"25 1","pages":"363-370"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Text-independent speaker verification using utterance level scoring and covariance modeling\",\"authors\":\"Ran D. Zilca\",\"doi\":\"10.1109/TSA.2002.803419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called utterance level scoring (ULS), allows one to obtain a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a distortion measure. Subsequently, a distortion measure between the utterance covariance and the sample covariance of data taken from different speakers is used to normalize the score. Experimental results from the 2000 NIST speaker recognition evaluation are presented for ULS, used with different distortion measures, and for a Gaussian mixture model (GMM) system. The results indicate that ULS as a viable alternative to GMM whenever the computational complexity and verification accuracy needs to be traded.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"25 1\",\"pages\":\"363-370\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2002.803419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2002.803419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文描述了一种计算简单的方法,利用二阶统计量进行文本无关的说话人验证。所建议的方法,称为话语水平评分(ULS),允许人们通过测试话语的框架获得一个标准化的分数。首先计算话语样本协方差,然后使用失真测量将其与说话人协方差进行比较。随后,使用不同说话人的语音协方差和样本协方差之间的失真度量来对分数进行归一化。给出了2000年NIST语音识别评估的实验结果,用于不同失真措施的ULS和高斯混合模型(GMM)系统。结果表明,当需要权衡计算复杂度和验证精度时,ULS作为GMM的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-independent speaker verification using utterance level scoring and covariance modeling
This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called utterance level scoring (ULS), allows one to obtain a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a distortion measure. Subsequently, a distortion measure between the utterance covariance and the sample covariance of data taken from different speakers is used to normalize the score. Experimental results from the 2000 NIST speaker recognition evaluation are presented for ULS, used with different distortion measures, and for a Gaussian mixture model (GMM) system. The results indicate that ULS as a viable alternative to GMM whenever the computational complexity and verification accuracy needs to be traded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信