Cen Chen, Chilin Fu, Xujun Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li, F. S. Bao
{"title":"客服机器人中用户意图预测的强化学习","authors":"Cen Chen, Chilin Fu, Xujun Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li, F. S. Bao","doi":"10.1145/3331184.3331370","DOIUrl":null,"url":null,"abstract":"A customer service bot is now a necessary component of an e-commerce platform. As a core module of the customer service bot, user intent prediction can help predict user questions before they ask. A typical solution is to find top candidate questions that a user will be interested in. Such solution ignores the inter-relationship between questions and often aims to maximize the immediate reward such as clicks, which may not be ideal in practice. Hence, we propose to view the problem as a sequential decision making process to better capture the long-term effects of each recommendation in the list. Intuitively, we formulate the problem as a Markov decision process and consider using reinforcement learning for the problem. With this approach, questions presented to users are both relevant and diverse. Experiments on offline real-world dataset and online system demonstrate the effectiveness of our proposed approach.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Reinforcement Learning for User Intent Prediction in Customer Service Bots\",\"authors\":\"Cen Chen, Chilin Fu, Xujun Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li, F. S. Bao\",\"doi\":\"10.1145/3331184.3331370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A customer service bot is now a necessary component of an e-commerce platform. As a core module of the customer service bot, user intent prediction can help predict user questions before they ask. A typical solution is to find top candidate questions that a user will be interested in. Such solution ignores the inter-relationship between questions and often aims to maximize the immediate reward such as clicks, which may not be ideal in practice. Hence, we propose to view the problem as a sequential decision making process to better capture the long-term effects of each recommendation in the list. Intuitively, we formulate the problem as a Markov decision process and consider using reinforcement learning for the problem. With this approach, questions presented to users are both relevant and diverse. Experiments on offline real-world dataset and online system demonstrate the effectiveness of our proposed approach.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement Learning for User Intent Prediction in Customer Service Bots
A customer service bot is now a necessary component of an e-commerce platform. As a core module of the customer service bot, user intent prediction can help predict user questions before they ask. A typical solution is to find top candidate questions that a user will be interested in. Such solution ignores the inter-relationship between questions and often aims to maximize the immediate reward such as clicks, which may not be ideal in practice. Hence, we propose to view the problem as a sequential decision making process to better capture the long-term effects of each recommendation in the list. Intuitively, we formulate the problem as a Markov decision process and consider using reinforcement learning for the problem. With this approach, questions presented to users are both relevant and diverse. Experiments on offline real-world dataset and online system demonstrate the effectiveness of our proposed approach.