DP-Sniper:使用分类器的黑盒发现差异隐私侵犯

Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev
{"title":"DP-Sniper:使用分类器的黑盒发现差异隐私侵犯","authors":"Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev","doi":"10.1109/SP40001.2021.00081","DOIUrl":null,"url":null,"abstract":"We present DP-Sniper, a practical black-box method that automatically finds violations of differential privacy.DP-Sniper is based on two key ideas: (i) training a classifier to predict if an observed output was likely generated from one of two possible inputs, and (ii) transforming this classifier into an approximately optimal attack on differential privacy.Our experimental evaluation demonstrates that DP-Sniper obtains up to 12.4 times stronger guarantees than state-of-the-art, while being 15.5 times faster. Further, we show that DP-Sniper is effective in exploiting floating-point vulnerabilities of naively implemented algorithms: it detects that a supposedly 0.1-differentially private implementation of the Laplace mechanism actually does not satisfy even 0.25-differential privacy.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"27 1","pages":"391-409"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers\",\"authors\":\"Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev\",\"doi\":\"10.1109/SP40001.2021.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present DP-Sniper, a practical black-box method that automatically finds violations of differential privacy.DP-Sniper is based on two key ideas: (i) training a classifier to predict if an observed output was likely generated from one of two possible inputs, and (ii) transforming this classifier into an approximately optimal attack on differential privacy.Our experimental evaluation demonstrates that DP-Sniper obtains up to 12.4 times stronger guarantees than state-of-the-art, while being 15.5 times faster. Further, we show that DP-Sniper is effective in exploiting floating-point vulnerabilities of naively implemented algorithms: it detects that a supposedly 0.1-differentially private implementation of the Laplace mechanism actually does not satisfy even 0.25-differential privacy.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"27 1\",\"pages\":\"391-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出DP-Sniper,一个实用的黑盒方法,自动发现侵犯差异隐私。DP-Sniper基于两个关键思想:(i)训练分类器来预测观察到的输出是否可能从两个可能的输入之一生成,以及(ii)将该分类器转换为对差分隐私的近似最优攻击。我们的实验评估表明,DP-Sniper获得的保证比最先进的产品高12.4倍,同时速度快15.5倍。此外,我们表明DP-Sniper在利用天真实现算法的浮点漏洞方面是有效的:它检测到拉普拉斯机制的0.1差分私有实现实际上甚至不满足0.25差分隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers
We present DP-Sniper, a practical black-box method that automatically finds violations of differential privacy.DP-Sniper is based on two key ideas: (i) training a classifier to predict if an observed output was likely generated from one of two possible inputs, and (ii) transforming this classifier into an approximately optimal attack on differential privacy.Our experimental evaluation demonstrates that DP-Sniper obtains up to 12.4 times stronger guarantees than state-of-the-art, while being 15.5 times faster. Further, we show that DP-Sniper is effective in exploiting floating-point vulnerabilities of naively implemented algorithms: it detects that a supposedly 0.1-differentially private implementation of the Laplace mechanism actually does not satisfy even 0.25-differential privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信