{"title":"用于光谱解混和泛锐化的空间和光谱分辨率差异很大的高光谱和彩色图像的非刚性配准","authors":"Yuan Zhou, Anand Rangarajan, P. Gader","doi":"10.1109/CVPRW.2017.201","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"26 1","pages":"1571-1579"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nonrigid Registration of Hyperspectral and Color Images with Vastly Different Spatial and Spectral Resolutions for Spectral Unmixing and Pansharpening\",\"authors\":\"Yuan Zhou, Anand Rangarajan, P. Gader\",\"doi\":\"10.1109/CVPRW.2017.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"26 1\",\"pages\":\"1571-1579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonrigid Registration of Hyperspectral and Color Images with Vastly Different Spatial and Spectral Resolutions for Spectral Unmixing and Pansharpening
In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.