用于光谱解混和泛锐化的空间和光谱分辨率差异很大的高光谱和彩色图像的非刚性配准

Yuan Zhou, Anand Rangarajan, P. Gader
{"title":"用于光谱解混和泛锐化的空间和光谱分辨率差异很大的高光谱和彩色图像的非刚性配准","authors":"Yuan Zhou, Anand Rangarajan, P. Gader","doi":"10.1109/CVPRW.2017.201","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"26 1","pages":"1571-1579"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nonrigid Registration of Hyperspectral and Color Images with Vastly Different Spatial and Spectral Resolutions for Spectral Unmixing and Pansharpening\",\"authors\":\"Yuan Zhou, Anand Rangarajan, P. Gader\",\"doi\":\"10.1109/CVPRW.2017.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"26 1\",\"pages\":\"1571-1579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种利用点扩散函数(PSF)进行超大尺度差图像配准的框架,并将其应用于高光谱、高分辨率彩色图像的配准。该算法利用光谱响应函数(SRF)、对高光谱图像进行非刚性自由变形和对彩色图像进行刚性变换来实现最小二乘目标函数的最小化。通过交替更新两个变换和两个物理函数来解决优化问题。我们在模拟的Pavia University数据集和真实的Salton Sea数据集上执行了该框架,并将所提出的算法与其刚性变化和两种相互信息的算法进行了比较。结果表明,LSQ自由格式版本在非刚性模拟和真实数据集上具有最佳性能,在高光谱域给出1像素非刚性畸变时误差小于0.15像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonrigid Registration of Hyperspectral and Color Images with Vastly Different Spatial and Spectral Resolutions for Spectral Unmixing and Pansharpening
In this paper, we propose a framework to register images with very large scale differences by utilizing the point spread function (PSF), and apply it to register hyperspectral and hi-resolution color images. The algorithm minimizes a least-squares (LSQ) objective function with an incorporated spectral response function (SRF), a nonrigid freeform deformation applied on the hyperspectral image and a rigid transformation on the color image. The optimization problem is solved by updating the two transformations and the two physical functions in an alternating fashion. We executed the framework on a simulated Pavia University dataset and a real Salton Sea dataset, by comparing the proposed algorithm with its rigid variation, and two mutual information-based algorithms. The results indicate that the LSQ freeform version has the best performance for the nonrigid simulation and real datasets, with less than 0.15 pixel error given 1 pixel nonrigid distortion in the hyperspectral domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信