密度估计的不确定度量化综述

IF 11 Q1 STATISTICS & PROBABILITY
Shaun McDonald, D. Campbell
{"title":"密度估计的不确定度量化综述","authors":"Shaun McDonald, D. Campbell","doi":"10.1214/21-SS130","DOIUrl":null,"url":null,"abstract":"It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"20 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A review of uncertainty quantification for density estimation\",\"authors\":\"Shaun McDonald, D. Campbell\",\"doi\":\"10.1214/21-SS130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-SS130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-SS130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

通过构造给定数据的未知密度可能存在的“似是而非”的集合来进行概率密度的推断通常是有用的。这种集合的例子包括点间隔、同时带或函数空间中的球,它们可以是频域的或贝叶斯的解释。对于几乎任何密度估计器,文献中都有多种可用的推断方法。在这里,我们回顾了这些文献,提供了密度不确定度量化的现有方法的全面概述。这里考虑的文献包括从理论到实践思想的范围,对于某些方法来说,这两个极端之间几乎没有共同点。在详细介绍了非参数推理的一些关键概念——不同类型的“似是而非”的集合,以及它们的解释和行为之后,我们列出了最突出的密度估计器和相应的不确定性量化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of uncertainty quantification for density estimation
It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信