{"title":"密度估计的不确定度量化综述","authors":"Shaun McDonald, D. Campbell","doi":"10.1214/21-SS130","DOIUrl":null,"url":null,"abstract":"It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"20 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A review of uncertainty quantification for density estimation\",\"authors\":\"Shaun McDonald, D. Campbell\",\"doi\":\"10.1214/21-SS130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-SS130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-SS130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A review of uncertainty quantification for density estimation
It is often useful to conduct inference for probability densities by constructing “plausible” sets in which the unknown density of given data may lie. Examples of such sets include pointwise intervals, simultaneous bands, or balls in a function space, and they may be frequentist or Bayesian in interpretation. For almost any density estimator, there are multiple approaches to inference available in the literature. Here we review such literature, providing a thorough overview of existing methods for density uncertainty quantification. The literature considered here comprises a spectrum from theoretical to practical ideas, and for some methods there is little commonality between these two extremes. After detailing some of the key concepts of nonparametric inference – the different types of “plausible” sets, and their interpretation and behaviour – we list the most prominent density estimators and the corresponding uncertainty quantification methods for each.
期刊介绍:
Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.