基于深度门控融合注意网络的人脸图像去模糊和超分辨率

Chao Yang, Long-Wen Chang
{"title":"基于深度门控融合注意网络的人脸图像去模糊和超分辨率","authors":"Chao Yang, Long-Wen Chang","doi":"10.1109/ICASSP40776.2020.9053784","DOIUrl":null,"url":null,"abstract":"Image deblurring and super-resolution are very important in image processing such as face verification. However, when in the outdoors, we often get blurry and low resolution images. To solve the problem, we propose a deep gated fusion attention network (DGFAN) to generate a high resolution image without blurring artifacts. We extract features from two task-independent structures for deburring and super-resolution to avoid the error propagation in the cascade structure of deblurring and super-resolution. We also add an attention module in our network by using channel-wise and spatial-wise features for better features and propose an edge loss function to make the model focus on facial features like eyes and nose. DGFAN performs favorably against the state-of-arts methods in terms of PSNR and SSIM. Also, using the clear images generated by DGFAN can improve the accuracy on face verification.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"1623-1627"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deblurring And Super-Resolution Using Deep Gated Fusion Attention Networks For Face Images\",\"authors\":\"Chao Yang, Long-Wen Chang\",\"doi\":\"10.1109/ICASSP40776.2020.9053784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image deblurring and super-resolution are very important in image processing such as face verification. However, when in the outdoors, we often get blurry and low resolution images. To solve the problem, we propose a deep gated fusion attention network (DGFAN) to generate a high resolution image without blurring artifacts. We extract features from two task-independent structures for deburring and super-resolution to avoid the error propagation in the cascade structure of deblurring and super-resolution. We also add an attention module in our network by using channel-wise and spatial-wise features for better features and propose an edge loss function to make the model focus on facial features like eyes and nose. DGFAN performs favorably against the state-of-arts methods in terms of PSNR and SSIM. Also, using the clear images generated by DGFAN can improve the accuracy on face verification.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"40 1\",\"pages\":\"1623-1627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在人脸验证等图像处理中,图像去模糊和超分辨率是非常重要的。然而,在户外,我们经常得到模糊和低分辨率的图像。为了解决这一问题,我们提出了一种深度门控融合注意网络(DGFAN)来生成无模糊伪影的高分辨率图像。我们从去毛刺和超分辨率两个任务无关的结构中提取特征,以避免去模糊和超分辨率级联结构中的误差传播。我们还在我们的网络中添加了一个注意力模块,通过使用通道智能和空间智能特征来获得更好的特征,并提出了一个边缘损失函数,使模型专注于眼睛和鼻子等面部特征。DGFAN在PSNR和SSIM方面优于最先进的方法。此外,利用DGFAN生成的清晰图像可以提高人脸验证的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deblurring And Super-Resolution Using Deep Gated Fusion Attention Networks For Face Images
Image deblurring and super-resolution are very important in image processing such as face verification. However, when in the outdoors, we often get blurry and low resolution images. To solve the problem, we propose a deep gated fusion attention network (DGFAN) to generate a high resolution image without blurring artifacts. We extract features from two task-independent structures for deburring and super-resolution to avoid the error propagation in the cascade structure of deblurring and super-resolution. We also add an attention module in our network by using channel-wise and spatial-wise features for better features and propose an edge loss function to make the model focus on facial features like eyes and nose. DGFAN performs favorably against the state-of-arts methods in terms of PSNR and SSIM. Also, using the clear images generated by DGFAN can improve the accuracy on face verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信