M. Garland, R. Schenter, R. J. Talbert, S. Mashnik, W. B. Wilson
{"title":"在裂变反应堆和粒子加速器中生产医用同位素的核数据要求","authors":"M. Garland, R. Schenter, R. J. Talbert, S. Mashnik, W. B. Wilson","doi":"10.1142/9789812793867_0043","DOIUrl":null,"url":null,"abstract":"Through decades of effort in nuclear data development and simulations of reactor neutronics and accelerator transmutation, a collection of reaction data is continuing to evolve with the potential of direct applications to the production of medical isotopes. At Los Alamos the CINDER'90 code and library have been developed for nuclide inventory calculations using neutron-reaction (En < 20 MeV) and/or decay data for 3400 nuclides; coupled with the LAHET Code System (LCS), irradiations in neutron and proton environments below a few GeV are tractable; additional work with the European Activation File, the HMS-ALICE code and the reaction models of MCNPX (CEM95, BERTINI, or ISABEL with or without preequilibrium, evaporation and fission) have been used to produce evaluated reaction data for neutrons and protons to 1.7 GeV. At the Pacific Northwest National Laboratory, efforts have focused on production of medical isotopes and the identification of available neutron reaction data from results of integral measurements.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1999-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear Data Requirements for the Production Of Medical Isotopes in Fission Reactors and Particle Accelerators\",\"authors\":\"M. Garland, R. Schenter, R. J. Talbert, S. Mashnik, W. B. Wilson\",\"doi\":\"10.1142/9789812793867_0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through decades of effort in nuclear data development and simulations of reactor neutronics and accelerator transmutation, a collection of reaction data is continuing to evolve with the potential of direct applications to the production of medical isotopes. At Los Alamos the CINDER'90 code and library have been developed for nuclide inventory calculations using neutron-reaction (En < 20 MeV) and/or decay data for 3400 nuclides; coupled with the LAHET Code System (LCS), irradiations in neutron and proton environments below a few GeV are tractable; additional work with the European Activation File, the HMS-ALICE code and the reaction models of MCNPX (CEM95, BERTINI, or ISABEL with or without preequilibrium, evaporation and fission) have been used to produce evaluated reaction data for neutrons and protons to 1.7 GeV. At the Pacific Northwest National Laboratory, efforts have focused on production of medical isotopes and the identification of available neutron reaction data from results of integral measurements.\",\"PeriodicalId\":8462,\"journal\":{\"name\":\"arXiv: Medical Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789812793867_0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812793867_0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuclear Data Requirements for the Production Of Medical Isotopes in Fission Reactors and Particle Accelerators
Through decades of effort in nuclear data development and simulations of reactor neutronics and accelerator transmutation, a collection of reaction data is continuing to evolve with the potential of direct applications to the production of medical isotopes. At Los Alamos the CINDER'90 code and library have been developed for nuclide inventory calculations using neutron-reaction (En < 20 MeV) and/or decay data for 3400 nuclides; coupled with the LAHET Code System (LCS), irradiations in neutron and proton environments below a few GeV are tractable; additional work with the European Activation File, the HMS-ALICE code and the reaction models of MCNPX (CEM95, BERTINI, or ISABEL with or without preequilibrium, evaporation and fission) have been used to produce evaluated reaction data for neutrons and protons to 1.7 GeV. At the Pacific Northwest National Laboratory, efforts have focused on production of medical isotopes and the identification of available neutron reaction data from results of integral measurements.