{"title":"各向同性Nikol'skii-Besov泛函类的逼近特性","authors":"S. Yanchenko, O. Radchenko","doi":"10.15330/cmp.13.3.851-861","DOIUrl":null,"url":null,"abstract":"In the paper, we investigates the isotropic Nikol'skii-Besov classes $B^r_{p,\\theta}(\\mathbb{R}^d)$ of non-periodic functions of several variables, which for $d = 1$ are identical to the classes of functions with a dominant mixed smoothness $S^{r}_{p,\\theta}B(\\mathbb{R})$. We establish the exact-order estimates for the approximation of functions from these classes $B^r_{p,\\theta}(\\mathbb{R}^d)$ in the metric of the Lebesgue space $L_q(\\mathbb{R}^d)$, by entire functions of exponential type with some restrictions for their spectrum in the case $1 \\leqslant p \\leqslant q \\leqslant \\infty$, $(p,q)\\neq \\{(1,1), (\\infty, \\infty)\\}$, $d\\geq 1$. In the case $2<p=q<\\infty$, $d=1$, the established estimate is also new for the classes $S^{r}_{p,\\theta}B(\\mathbb{R})$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation characteristics of the isotropic Nikol'skii-Besov functional classes\",\"authors\":\"S. Yanchenko, O. Radchenko\",\"doi\":\"10.15330/cmp.13.3.851-861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we investigates the isotropic Nikol'skii-Besov classes $B^r_{p,\\\\theta}(\\\\mathbb{R}^d)$ of non-periodic functions of several variables, which for $d = 1$ are identical to the classes of functions with a dominant mixed smoothness $S^{r}_{p,\\\\theta}B(\\\\mathbb{R})$. We establish the exact-order estimates for the approximation of functions from these classes $B^r_{p,\\\\theta}(\\\\mathbb{R}^d)$ in the metric of the Lebesgue space $L_q(\\\\mathbb{R}^d)$, by entire functions of exponential type with some restrictions for their spectrum in the case $1 \\\\leqslant p \\\\leqslant q \\\\leqslant \\\\infty$, $(p,q)\\\\neq \\\\{(1,1), (\\\\infty, \\\\infty)\\\\}$, $d\\\\geq 1$. In the case $2<p=q<\\\\infty$, $d=1$, the established estimate is also new for the classes $S^{r}_{p,\\\\theta}B(\\\\mathbb{R})$.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.13.3.851-861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.13.3.851-861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation characteristics of the isotropic Nikol'skii-Besov functional classes
In the paper, we investigates the isotropic Nikol'skii-Besov classes $B^r_{p,\theta}(\mathbb{R}^d)$ of non-periodic functions of several variables, which for $d = 1$ are identical to the classes of functions with a dominant mixed smoothness $S^{r}_{p,\theta}B(\mathbb{R})$. We establish the exact-order estimates for the approximation of functions from these classes $B^r_{p,\theta}(\mathbb{R}^d)$ in the metric of the Lebesgue space $L_q(\mathbb{R}^d)$, by entire functions of exponential type with some restrictions for their spectrum in the case $1 \leqslant p \leqslant q \leqslant \infty$, $(p,q)\neq \{(1,1), (\infty, \infty)\}$, $d\geq 1$. In the case $2