智能体挖掘的系统映射研究

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
E. L. Strugeon, K. Oliveira, Marie Thilliez, Dorian Petit
{"title":"智能体挖掘的系统映射研究","authors":"E. L. Strugeon, K. Oliveira, Marie Thilliez, Dorian Petit","doi":"10.1080/0952813X.2020.1864784","DOIUrl":null,"url":null,"abstract":"ABSTRACT Over the past two decades, many studies have been published in diverse fields of application combining agent abilities (knowledge processing, communication, learning, mobility, etc.) and data mining approaches (clustering, decision trees, ontologies, etc.). We performed a systematic mapping study to quantitatively analyse these contributions about agent mining. We determined that most of the publications were in the field of data mining using agent systems to collect or mine the data. Some used data mining solutions to improve agent behaviour, and very few publications integrated both agent and mining approaches. In the latter case, most were published in the last few years, which highlights the advances in research integrating agents and mining approaches.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"41 1","pages":"189 - 214"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A systematic mapping study on agent mining\",\"authors\":\"E. L. Strugeon, K. Oliveira, Marie Thilliez, Dorian Petit\",\"doi\":\"10.1080/0952813X.2020.1864784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Over the past two decades, many studies have been published in diverse fields of application combining agent abilities (knowledge processing, communication, learning, mobility, etc.) and data mining approaches (clustering, decision trees, ontologies, etc.). We performed a systematic mapping study to quantitatively analyse these contributions about agent mining. We determined that most of the publications were in the field of data mining using agent systems to collect or mine the data. Some used data mining solutions to improve agent behaviour, and very few publications integrated both agent and mining approaches. In the latter case, most were published in the last few years, which highlights the advances in research integrating agents and mining approaches.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"41 1\",\"pages\":\"189 - 214\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2020.1864784\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2020.1864784","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

在过去的二十年中,在结合智能体能力(知识处理、通信、学习、移动性等)和数据挖掘方法(聚类、决策树、本体等)的应用领域发表了许多研究。我们进行了系统的映射研究,以定量分析这些对代理挖掘的贡献。我们确定大多数出版物都是在使用代理系统收集或挖掘数据的数据挖掘领域。一些使用数据挖掘解决方案来改进代理行为,很少有出版物将代理和挖掘方法结合在一起。在后一种情况下,大多数是在最近几年发表的,其中突出了综合药剂和挖掘方法的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic mapping study on agent mining
ABSTRACT Over the past two decades, many studies have been published in diverse fields of application combining agent abilities (knowledge processing, communication, learning, mobility, etc.) and data mining approaches (clustering, decision trees, ontologies, etc.). We performed a systematic mapping study to quantitatively analyse these contributions about agent mining. We determined that most of the publications were in the field of data mining using agent systems to collect or mine the data. Some used data mining solutions to improve agent behaviour, and very few publications integrated both agent and mining approaches. In the latter case, most were published in the last few years, which highlights the advances in research integrating agents and mining approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信