{"title":"纳米铁氧体镉的制备与表征","authors":"S. M. Ismail, S. Labib, S. Attallah","doi":"10.1155/2013/526434","DOIUrl":null,"url":null,"abstract":"Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"35 1","pages":"1-8"},"PeriodicalIF":18.6000,"publicationDate":"2013-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Preparation and Characterization of Nano-Cadmium Ferrite\",\"authors\":\"S. M. Ismail, S. Labib, S. Attallah\",\"doi\":\"10.1155/2013/526434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"35 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/526434\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/526434","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Preparation and Characterization of Nano-Cadmium Ferrite
Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.