纳米铁氧体镉的制备与表征

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
S. M. Ismail, S. Labib, S. Attallah
{"title":"纳米铁氧体镉的制备与表征","authors":"S. M. Ismail, S. Labib, S. Attallah","doi":"10.1155/2013/526434","DOIUrl":null,"url":null,"abstract":"Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"35 1","pages":"1-8"},"PeriodicalIF":18.6000,"publicationDate":"2013-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Preparation and Characterization of Nano-Cadmium Ferrite\",\"authors\":\"S. M. Ismail, S. Labib, S. Attallah\",\"doi\":\"10.1155/2013/526434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"35 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/526434\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/526434","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 23

摘要

采用模板辅助溶胶-凝胶法制备了纳米赤铁矿(α-Fe2O3)和纳米铁酸镉(CdFe2O4)。利用x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和穆斯堡尔光谱技术对制备的样品进行了结构和微观结构分析。500℃可形成粒径为~60 nm的纳米-α-Fe2O3, 600℃可形成粒径较小(~40 nm)的纳米- cdfe2o4。结果表明,采用简单的溶胶-凝胶法制备纳米cdfe2o4具有较好的条件:烧结温度和烧结时间较低(经济点),且粒径较小。因此,根据得到的实验结果,提出了一个理论模型来解释溶胶-凝胶工艺的使用与低温下形成纳米cdfe2o4纯相之间的联系。该模型基于溶液中形成的原子核之间的简单静磁相互作用,从而在低温下形成稳定相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Characterization of Nano-Cadmium Ferrite
Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mossbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信