{"title":"关于顶点映射","authors":"Sebastian Koch","doi":"10.2478/forma-2019-0025","DOIUrl":null,"url":null,"abstract":"Summary In [6] partial graph mappings were formalized in the Mizar system [3]. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About Vertex Mappings\",\"authors\":\"Sebastian Koch\",\"doi\":\"10.2478/forma-2019-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In [6] partial graph mappings were formalized in the Mizar system [3]. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2019-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2019-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Summary In [6] partial graph mappings were formalized in the Mizar system [3]. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.