Enas Al-Faqra, Y. Murad, Mu'tasim Abdel Jaber, Nasim Shatarat
{"title":"螺旋配筋高强混凝土梁的抗扭性能","authors":"Enas Al-Faqra, Y. Murad, Mu'tasim Abdel Jaber, Nasim Shatarat","doi":"10.1080/13287982.2021.1962489","DOIUrl":null,"url":null,"abstract":"ABSTRACT The torsional behaviour of high-strength concrete beams that are transversely reinforced with continuous spiral reinforcement is experimentally investigated in this research. Seventeen specimens are divided into four groups according to their concrete strength: 25, 50, 60, and 70 MPa. Two types of transverse reinforcement, including closed and spiral stirrups, are used at a transverse spacing of 75 and 125 mm for each group. Test results are compared to the analytical values predicted using the ACI equation. Test results have shown an enhancement in the ultimate torsional capacity for the specimens made with high strength concrete compared to those made using normal strength concrete. The enhancement percentage ranges from 1.4% to 46.3%. In addition, results have shown an enhancement in the ultimate torsional capacity for specimens reinforced with spiral reinforcement compared to specimens made with conventional closed stirrups. The enhancement percentage varies from 8.3% to 34.6%. The study concluded that utilising continuous spiral reinforcement would result in higher ultimate torsional capacity than traditional closed stirrups for the same strength of concrete and that the torsion equations of ACI-318 M-19 are applicable and conservative for high strength concrete with a continuous spiral reinforcement.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Torsional behaviour of high strength concrete beams with spiral reinforcement\",\"authors\":\"Enas Al-Faqra, Y. Murad, Mu'tasim Abdel Jaber, Nasim Shatarat\",\"doi\":\"10.1080/13287982.2021.1962489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The torsional behaviour of high-strength concrete beams that are transversely reinforced with continuous spiral reinforcement is experimentally investigated in this research. Seventeen specimens are divided into four groups according to their concrete strength: 25, 50, 60, and 70 MPa. Two types of transverse reinforcement, including closed and spiral stirrups, are used at a transverse spacing of 75 and 125 mm for each group. Test results are compared to the analytical values predicted using the ACI equation. Test results have shown an enhancement in the ultimate torsional capacity for the specimens made with high strength concrete compared to those made using normal strength concrete. The enhancement percentage ranges from 1.4% to 46.3%. In addition, results have shown an enhancement in the ultimate torsional capacity for specimens reinforced with spiral reinforcement compared to specimens made with conventional closed stirrups. The enhancement percentage varies from 8.3% to 34.6%. The study concluded that utilising continuous spiral reinforcement would result in higher ultimate torsional capacity than traditional closed stirrups for the same strength of concrete and that the torsion equations of ACI-318 M-19 are applicable and conservative for high strength concrete with a continuous spiral reinforcement.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2021.1962489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1962489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Torsional behaviour of high strength concrete beams with spiral reinforcement
ABSTRACT The torsional behaviour of high-strength concrete beams that are transversely reinforced with continuous spiral reinforcement is experimentally investigated in this research. Seventeen specimens are divided into four groups according to their concrete strength: 25, 50, 60, and 70 MPa. Two types of transverse reinforcement, including closed and spiral stirrups, are used at a transverse spacing of 75 and 125 mm for each group. Test results are compared to the analytical values predicted using the ACI equation. Test results have shown an enhancement in the ultimate torsional capacity for the specimens made with high strength concrete compared to those made using normal strength concrete. The enhancement percentage ranges from 1.4% to 46.3%. In addition, results have shown an enhancement in the ultimate torsional capacity for specimens reinforced with spiral reinforcement compared to specimens made with conventional closed stirrups. The enhancement percentage varies from 8.3% to 34.6%. The study concluded that utilising continuous spiral reinforcement would result in higher ultimate torsional capacity than traditional closed stirrups for the same strength of concrete and that the torsion equations of ACI-318 M-19 are applicable and conservative for high strength concrete with a continuous spiral reinforcement.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.