非结构化数据管理系统AUDR中的图像检索

Junwu Luo, B. Lang, Chao Tian, Danchen Zhang
{"title":"非结构化数据管理系统AUDR中的图像检索","authors":"Junwu Luo, B. Lang, Chao Tian, Danchen Zhang","doi":"10.1109/eScience.2012.6404474","DOIUrl":null,"url":null,"abstract":"The explosive growth of image data leads to severe challenges to the traditional image retrieval methods. In order to manage massive images more accurate and efficient, this paper firstly proposes a scalable architecture for image retrieval based on a uniform data model and makes this function a sub-engine of AUDR, an advanced unstructured data management system, which can simultaneously manage several kinds of unstructured data including image, video, audio and text. The paper then proposes a new image retrieval algorithm, which incorporates rich visual features and two text models for multi-modal retrieval. Experiments on both ImageNet dataset and ImageCLEF medical dataset show that our proposed architecture and the new retrieval algorithm are appropriate for efficient management of massive image.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image retrieval in the unstructured data management system AUDR\",\"authors\":\"Junwu Luo, B. Lang, Chao Tian, Danchen Zhang\",\"doi\":\"10.1109/eScience.2012.6404474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosive growth of image data leads to severe challenges to the traditional image retrieval methods. In order to manage massive images more accurate and efficient, this paper firstly proposes a scalable architecture for image retrieval based on a uniform data model and makes this function a sub-engine of AUDR, an advanced unstructured data management system, which can simultaneously manage several kinds of unstructured data including image, video, audio and text. The paper then proposes a new image retrieval algorithm, which incorporates rich visual features and two text models for multi-modal retrieval. Experiments on both ImageNet dataset and ImageCLEF medical dataset show that our proposed architecture and the new retrieval algorithm are appropriate for efficient management of massive image.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

图像数据的爆炸式增长对传统的图像检索方法提出了严峻的挑战。为了更准确、高效地管理海量图像,本文首先提出了一种基于统一数据模型的可扩展图像检索架构,并将该功能作为先进的非结构化数据管理系统AUDR的子引擎,实现对图像、视频、音频和文本等多种非结构化数据的同时管理。然后提出了一种新的图像检索算法,该算法结合了丰富的视觉特征和两种文本模型进行多模态检索。在ImageNet数据集和ImageCLEF医学数据集上的实验表明,我们提出的检索架构和新算法适用于海量图像的高效管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image retrieval in the unstructured data management system AUDR
The explosive growth of image data leads to severe challenges to the traditional image retrieval methods. In order to manage massive images more accurate and efficient, this paper firstly proposes a scalable architecture for image retrieval based on a uniform data model and makes this function a sub-engine of AUDR, an advanced unstructured data management system, which can simultaneously manage several kinds of unstructured data including image, video, audio and text. The paper then proposes a new image retrieval algorithm, which incorporates rich visual features and two text models for multi-modal retrieval. Experiments on both ImageNet dataset and ImageCLEF medical dataset show that our proposed architecture and the new retrieval algorithm are appropriate for efficient management of massive image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信