磁流体的拓扑不稳定性

B. Berkovsky, V. Kalikmanov
{"title":"磁流体的拓扑不稳定性","authors":"B. Berkovsky, V. Kalikmanov","doi":"10.1051/JPHYSLET:019850046011048300","DOIUrl":null,"url":null,"abstract":"A finite volume of a magnetic fluid resting on a solid base in an external homogeneous magnetic field is considered. An approach to the theory of topological instability is proposed and the instability criterion is derived. The shape hysteresis (first order phase transition) for fluids with high magnetic susceptibility is predicted On a etudie le comportement d'un volume limite de fluide magnetique reposant sur une base solide et place dans un champ magnetique exterieur homogene. On a obtenu un critere d'instabilite topologique. L'existence de l'hysteresis des formes (transition de phase du 1er ordre) a ete predite","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"27 1","pages":"483-491"},"PeriodicalIF":0.0000,"publicationDate":"1985-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Topological instability of magnetic fluids\",\"authors\":\"B. Berkovsky, V. Kalikmanov\",\"doi\":\"10.1051/JPHYSLET:019850046011048300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite volume of a magnetic fluid resting on a solid base in an external homogeneous magnetic field is considered. An approach to the theory of topological instability is proposed and the instability criterion is derived. The shape hysteresis (first order phase transition) for fluids with high magnetic susceptibility is predicted On a etudie le comportement d'un volume limite de fluide magnetique reposant sur une base solide et place dans un champ magnetique exterieur homogene. On a obtenu un critere d'instabilite topologique. L'existence de l'hysteresis des formes (transition de phase du 1er ordre) a ete predite\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"27 1\",\"pages\":\"483-491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046011048300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046011048300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

考虑外均匀磁场中固体基底上的磁流体的有限体积。提出了拓扑不稳定理论的一种方法,并推导了不稳定判据。利用基于体积限制的流体磁滞特性研究了高磁化率流体的形状滞回(一阶相变)。一种非准则不稳定拓扑。滞回形式的存在性(相变的顺序)是一个前提
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological instability of magnetic fluids
A finite volume of a magnetic fluid resting on a solid base in an external homogeneous magnetic field is considered. An approach to the theory of topological instability is proposed and the instability criterion is derived. The shape hysteresis (first order phase transition) for fluids with high magnetic susceptibility is predicted On a etudie le comportement d'un volume limite de fluide magnetique reposant sur une base solide et place dans un champ magnetique exterieur homogene. On a obtenu un critere d'instabilite topologique. L'existence de l'hysteresis des formes (transition de phase du 1er ordre) a ete predite
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信