三维李群中Frenet曲线的自然偶和共轭偶

Mahmut Mak
{"title":"三维李群中Frenet曲线的自然偶和共轭偶","authors":"Mahmut Mak","doi":"10.31801/CFSUASMAS.785489","DOIUrl":null,"url":null,"abstract":"In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group $ \\mathbb{G} $ with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in $ \\mathbb{G} $. Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in $ \\mathbb{G} $ when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Natural and conjugate mates of Frenet curves in three-dimensional Lie group\",\"authors\":\"Mahmut Mak\",\"doi\":\"10.31801/CFSUASMAS.785489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group $ \\\\mathbb{G} $ with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in $ \\\\mathbb{G} $. Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in $ \\\\mathbb{G} $ when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/CFSUASMAS.785489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/CFSUASMAS.785489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入了具有双不变度量的三维李群$ \mathbb{G} $中的Frenet曲线的自然伴侣和共轭伴侣。同时,我们也给出了在$ \mathbb{G} $中Frenet曲线与它的自然伴侣或共轭伴侣之间的一些关系。特别是在$ \mathbb{G} $中,当Frenet曲线为一般螺旋、斜螺旋、球面曲线、整流曲线、Salkowski(常曲率和常扭转)、反Salkowski(非常曲率和常扭转)、Bertrand曲线时,我们得到了Frenet曲线的自然伴侣和共轭伴侣的一些结果。最后给出了欧几里得三维空间中作为交换李群的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural and conjugate mates of Frenet curves in three-dimensional Lie group
In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group $ \mathbb{G} $ with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in $ \mathbb{G} $. Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in $ \mathbb{G} $ when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信