中大气中NO作为化学示踪剂的同位素鉴定

A.C. Aikin
{"title":"中大气中NO作为化学示踪剂的同位素鉴定","authors":"A.C. Aikin","doi":"10.1016/S1464-1917(01)00041-1","DOIUrl":null,"url":null,"abstract":"<div><p>The nitrogen isotope ratio of middle atmosphere nitrogen oxide is predicted as a function of altitude. Nitrogen oxides originate photochemically either from stratospheric nitrous oxide reacting with O(<sup>1</sup>D) or in the mesosphere and thermosphere from direct dissociation of N<sub>2</sub> and ionization-initiated reactions involving O<sub>2</sub> and N<sub>2</sub>. During its formation process, N<sub>2</sub>O acquires a nitrogen isotopic composition of N isotopes different than N<sub>2</sub>. Photodissociation within the stratosphere also modifies the proportion of isotopes. Reaction of stratospheric NO with O<sub>3</sub> produces NO<sub>2</sub>, which when photodissociated yields NO depleted in <sup>15</sup>N relative to NO<sub>2</sub> in laboratory air. The value of δ<sup>15</sup>NO in the stratosphere is −100‰. In the altitude region between 50 and 65 km, NO is transformed into NO<sub>2</sub> and then returned to NO by reaction of NO<sub>2</sub> with O and by NO<sub>2</sub> photodissociation. These reactions determine the isotopic makeup of NO. Above 65 km, nitric oxide is produced by local ionization processes and gas phase photochemical reactions involving N<sub>2</sub> and excited O<sub>2</sub>. These processes determine the isotopic composition of NO in the upper mesosphere and thermosphere. Here δ<sup>15</sup>NO is 0‰. Air transported into the mesosphere above 65 km will reflect the NO isotopic values of the region below, while mesospheric NO transported below 65 km will not be distinguishable from NO originating in the stratosphere.</p></div>","PeriodicalId":101026,"journal":{"name":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","volume":"26 7","pages":"Pages 527-532"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1917(01)00041-1","citationCount":"6","resultStr":"{\"title\":\"Isotope identification in NO as a chemical tracer in the middle atmosphere\",\"authors\":\"A.C. Aikin\",\"doi\":\"10.1016/S1464-1917(01)00041-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nitrogen isotope ratio of middle atmosphere nitrogen oxide is predicted as a function of altitude. Nitrogen oxides originate photochemically either from stratospheric nitrous oxide reacting with O(<sup>1</sup>D) or in the mesosphere and thermosphere from direct dissociation of N<sub>2</sub> and ionization-initiated reactions involving O<sub>2</sub> and N<sub>2</sub>. During its formation process, N<sub>2</sub>O acquires a nitrogen isotopic composition of N isotopes different than N<sub>2</sub>. Photodissociation within the stratosphere also modifies the proportion of isotopes. Reaction of stratospheric NO with O<sub>3</sub> produces NO<sub>2</sub>, which when photodissociated yields NO depleted in <sup>15</sup>N relative to NO<sub>2</sub> in laboratory air. The value of δ<sup>15</sup>NO in the stratosphere is −100‰. In the altitude region between 50 and 65 km, NO is transformed into NO<sub>2</sub> and then returned to NO by reaction of NO<sub>2</sub> with O and by NO<sub>2</sub> photodissociation. These reactions determine the isotopic makeup of NO. Above 65 km, nitric oxide is produced by local ionization processes and gas phase photochemical reactions involving N<sub>2</sub> and excited O<sub>2</sub>. These processes determine the isotopic composition of NO in the upper mesosphere and thermosphere. Here δ<sup>15</sup>NO is 0‰. Air transported into the mesosphere above 65 km will reflect the NO isotopic values of the region below, while mesospheric NO transported below 65 km will not be distinguishable from NO originating in the stratosphere.</p></div>\",\"PeriodicalId\":101026,\"journal\":{\"name\":\"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science\",\"volume\":\"26 7\",\"pages\":\"Pages 527-532\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1464-1917(01)00041-1\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464191701000411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464191701000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

预测了中大气氮氧化物氮同位素比值随海拔高度的变化。氮氧化物的光化学来源可以是平流层中的氧化亚氮与O(1D)反应,也可以是中间层和热层中N2的直接解离和涉及O2和N2的电离引发的反应。在其形成过程中,N2O获得了不同于N2的N同位素组成。平流层中的光解作用也改变了同位素的比例。平流层NO与O3反应产生NO2, NO2光解后产生的NO相对于实验室空气中的NO2在15N中耗尽。平流层δ15NO值为−100‰。在50 ~ 65 km高度区域,NO转化为NO2,再通过NO2与O反应和NO2光解作用转化为NO。这些反应决定了NO的同位素组成。在65公里以上,一氧化氮是由局部电离过程和N2与受激O2的气相光化学反应产生的。这些过程决定了上层中间层和热层中NO的同位素组成。这里δ15NO = 0‰。65 km以上输送到中间层的空气将反映下方区域的NO同位素值,而65 km以下输送到中间层的NO将与源自平流层的NO无法区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotope identification in NO as a chemical tracer in the middle atmosphere

The nitrogen isotope ratio of middle atmosphere nitrogen oxide is predicted as a function of altitude. Nitrogen oxides originate photochemically either from stratospheric nitrous oxide reacting with O(1D) or in the mesosphere and thermosphere from direct dissociation of N2 and ionization-initiated reactions involving O2 and N2. During its formation process, N2O acquires a nitrogen isotopic composition of N isotopes different than N2. Photodissociation within the stratosphere also modifies the proportion of isotopes. Reaction of stratospheric NO with O3 produces NO2, which when photodissociated yields NO depleted in 15N relative to NO2 in laboratory air. The value of δ15NO in the stratosphere is −100‰. In the altitude region between 50 and 65 km, NO is transformed into NO2 and then returned to NO by reaction of NO2 with O and by NO2 photodissociation. These reactions determine the isotopic makeup of NO. Above 65 km, nitric oxide is produced by local ionization processes and gas phase photochemical reactions involving N2 and excited O2. These processes determine the isotopic composition of NO in the upper mesosphere and thermosphere. Here δ15NO is 0‰. Air transported into the mesosphere above 65 km will reflect the NO isotopic values of the region below, while mesospheric NO transported below 65 km will not be distinguishable from NO originating in the stratosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信