小行星检索可行性

J. Brophy, L. Friedman, F. Culick
{"title":"小行星检索可行性","authors":"J. Brophy, L. Friedman, F. Culick","doi":"10.1109/AERO.2012.6187031","DOIUrl":null,"url":null,"abstract":"This paper describes the interim results of a study sponsored by the Keck Institute for Space Studies to investigate the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility hinges on finding an overlap between the smallest NEAs that can be reasonably discovered and characterized and the largest NEAs that can be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs with a nominal diameter of roughly 7 m corresponding to masses in the range of 250,000 kg to 1,000,000 kg. Trajectory analysis based on asteroid 2008HU4 suggests that such an asteroid could be returned to a high-Earth orbit using a single Atlas V-class launch vehicle and a 40-kW solar electric propulsion system by 2026. The return of such an object could serve as a testbed for human operations in the vicinity of an asteroid. It would provide a wealth of scientific and engineering information and would enable detailed evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Asteroid retrieval feasibility\",\"authors\":\"J. Brophy, L. Friedman, F. Culick\",\"doi\":\"10.1109/AERO.2012.6187031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the interim results of a study sponsored by the Keck Institute for Space Studies to investigate the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility hinges on finding an overlap between the smallest NEAs that can be reasonably discovered and characterized and the largest NEAs that can be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs with a nominal diameter of roughly 7 m corresponding to masses in the range of 250,000 kg to 1,000,000 kg. Trajectory analysis based on asteroid 2008HU4 suggests that such an asteroid could be returned to a high-Earth orbit using a single Atlas V-class launch vehicle and a 40-kW solar electric propulsion system by 2026. The return of such an object could serve as a testbed for human operations in the vicinity of an asteroid. It would provide a wealth of scientific and engineering information and would enable detailed evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

本文描述了由凯克空间研究所赞助的一项研究的中期结果,该研究旨在调查在未来十年中期识别、机器人捕获并将整个近地小行星(NEA)送回地球附近的可行性。可行性取决于在合理的飞行时间内找到可以合理发现和表征的最小近地天体与可以捕获和运输的最大近地天体之间的重叠。这种重叠似乎集中在公称直径约为7米的近地天体上,对应的质量在25万公斤到100万公斤之间。基于小行星2008HU4的轨道分析表明,到2026年,这样的小行星可以使用一个Atlas v级运载火箭和一个40千瓦的太阳能电力推进系统返回高地球轨道。这样一个物体的返回可以作为人类在小行星附近操作的试验台。它将提供丰富的科学和工程资料,并能够详细评价其资源潜力,确定其内部结构和其他对行星防御活动很重要的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asteroid retrieval feasibility
This paper describes the interim results of a study sponsored by the Keck Institute for Space Studies to investigate the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility hinges on finding an overlap between the smallest NEAs that can be reasonably discovered and characterized and the largest NEAs that can be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs with a nominal diameter of roughly 7 m corresponding to masses in the range of 250,000 kg to 1,000,000 kg. Trajectory analysis based on asteroid 2008HU4 suggests that such an asteroid could be returned to a high-Earth orbit using a single Atlas V-class launch vehicle and a 40-kW solar electric propulsion system by 2026. The return of such an object could serve as a testbed for human operations in the vicinity of an asteroid. It would provide a wealth of scientific and engineering information and would enable detailed evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信