希尔伯特曲线上窗口查询的四分割算法

Chen-Chang Wu, Ye-In Chang
{"title":"希尔伯特曲线上窗口查询的四分割算法","authors":"Chen-Chang Wu, Ye-In Chang","doi":"10.1049/IET-IPR.2008.0155","DOIUrl":null,"url":null,"abstract":"Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain spatial locality of multi-dimensional data in a wide variety of applications. A window query is an important query operation in spatial (image) databases. Given a Hilbert curve, a window query reports its corresponding orders without the need to decode all the points inside this window into the corresponding Hilbert orders. Given a query window of size p times q on a Hilbert curve of size T times T , Chung et al. have proposed an algorithm for decomposing a window into the corresponding Hilbert orders, which needs O ( n log T ) time, where n = max ( p , q ). By employing the properties of Hilbert curves, the authors present an efficient algorithm, named as Quad-Splitting, for decomposing a window into the corresponding Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although the proposed algorithm also takes O ( n log T ) time, it does not perform individual sorting and merging steps which are needed in Chung et al. 's algorithm. Therefore experimental results show that the Quad-Splitting algorithm outperforms Chung et al. 's algorithm.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"17 1","pages":"299-311"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quad-splitting algorithm for a window query on a Hilbert curve\",\"authors\":\"Chen-Chang Wu, Ye-In Chang\",\"doi\":\"10.1049/IET-IPR.2008.0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain spatial locality of multi-dimensional data in a wide variety of applications. A window query is an important query operation in spatial (image) databases. Given a Hilbert curve, a window query reports its corresponding orders without the need to decode all the points inside this window into the corresponding Hilbert orders. Given a query window of size p times q on a Hilbert curve of size T times T , Chung et al. have proposed an algorithm for decomposing a window into the corresponding Hilbert orders, which needs O ( n log T ) time, where n = max ( p , q ). By employing the properties of Hilbert curves, the authors present an efficient algorithm, named as Quad-Splitting, for decomposing a window into the corresponding Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although the proposed algorithm also takes O ( n log T ) time, it does not perform individual sorting and merging steps which are needed in Chung et al. 's algorithm. Therefore experimental results show that the Quad-Splitting algorithm outperforms Chung et al. 's algorithm.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"17 1\",\"pages\":\"299-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IET-IPR.2008.0155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2008.0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

空间填充曲线,特别是希尔伯特曲线,在各种应用中被广泛用于保持多维数据的空间局部性。窗口查询是空间(图像)数据库中一个重要的查询操作。给定一条希尔伯特曲线,窗口查询报告其相应的阶数,而不需要将窗口内的所有点解码为相应的希尔伯特阶数。给定大小为T * T的Hilbert曲线上大小为p * q的查询窗口,Chung等人提出了一种将窗口分解为相应的Hilbert阶的算法,该算法需要O (n log T)时间,其中n = max (p, q)。利用希尔伯特曲线的性质,作者提出了一种有效的算法,称为四分法,该算法将一个窗口分解为希尔伯特曲线上相应的希尔伯特阶,而不需要单独的排序和合并步骤。虽然所提出的算法也需要O (n log T)的时间,但它不执行Chung等人所需要的单独排序和合并步骤。的算法。因此,实验结果表明,四分频算法优于Chung等人。的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quad-splitting algorithm for a window query on a Hilbert curve
Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain spatial locality of multi-dimensional data in a wide variety of applications. A window query is an important query operation in spatial (image) databases. Given a Hilbert curve, a window query reports its corresponding orders without the need to decode all the points inside this window into the corresponding Hilbert orders. Given a query window of size p times q on a Hilbert curve of size T times T , Chung et al. have proposed an algorithm for decomposing a window into the corresponding Hilbert orders, which needs O ( n log T ) time, where n = max ( p , q ). By employing the properties of Hilbert curves, the authors present an efficient algorithm, named as Quad-Splitting, for decomposing a window into the corresponding Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although the proposed algorithm also takes O ( n log T ) time, it does not perform individual sorting and merging steps which are needed in Chung et al. 's algorithm. Therefore experimental results show that the Quad-Splitting algorithm outperforms Chung et al. 's algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信