关于与不可积平面场相切的若干向量场的动力学

Pub Date : 2019-05-28 DOI:10.4310/JSG.2021.V19.N2.A3
N. Pia
{"title":"关于与不可积平面场相切的若干向量场的动力学","authors":"N. Pia","doi":"10.4310/JSG.2021.V19.N2.A3","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{E}^3\\subset TM^n$ be a smooth $3$-distribution on a smooth manifold of dimension $n$ and $\\mathcal{W}\\subset\\mathcal{E}$ a line field such that $[\\mathcal{W},\\mathcal{E}]\\subset\\mathcal{E}$. Under some orientability hypothesis, we give a necessary condition for the existence of a plane field $\\mathcal{D}^2$ such that $\\mathcal{W}\\subset\\mathcal{D}$ and $[\\mathcal{D},\\mathcal{D}]=\\mathcal{E}$. Moreover we study the case where a section of $\\mathcal{W}$ is non-singular Morse-Smale and we get a sufficient condition for the global existence of $\\mathcal{D}$. As a corollary we get conditions for a non-singular vector field $W$ on a $3$-manifold to be Legendrian for a contact structure $\\mathcal{D}$. Similarly with these techniques we can study when an even contact structure $\\mathcal{E}\\subset TM^4$ is induced by an Engel structure $\\mathcal{D}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the dynamics of some vector fields tangent to non-integrable plane fields\",\"authors\":\"N. Pia\",\"doi\":\"10.4310/JSG.2021.V19.N2.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{E}^3\\\\subset TM^n$ be a smooth $3$-distribution on a smooth manifold of dimension $n$ and $\\\\mathcal{W}\\\\subset\\\\mathcal{E}$ a line field such that $[\\\\mathcal{W},\\\\mathcal{E}]\\\\subset\\\\mathcal{E}$. Under some orientability hypothesis, we give a necessary condition for the existence of a plane field $\\\\mathcal{D}^2$ such that $\\\\mathcal{W}\\\\subset\\\\mathcal{D}$ and $[\\\\mathcal{D},\\\\mathcal{D}]=\\\\mathcal{E}$. Moreover we study the case where a section of $\\\\mathcal{W}$ is non-singular Morse-Smale and we get a sufficient condition for the global existence of $\\\\mathcal{D}$. As a corollary we get conditions for a non-singular vector field $W$ on a $3$-manifold to be Legendrian for a contact structure $\\\\mathcal{D}$. Similarly with these techniques we can study when an even contact structure $\\\\mathcal{E}\\\\subset TM^4$ is induced by an Engel structure $\\\\mathcal{D}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2021.V19.N2.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.V19.N2.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$\mathcal{E}^3\子集TM^n$是维数$n$和$\mathcal{W}\子集\mathcal{E}$上的光滑$3$-分布,是一个行域,使得$[\mathcal{W},\mathcal{E}]\子集\mathcal{E}$。在可定向性假设下,给出了平面场$\mathcal{D}^2$存在的必要条件,使得$\mathcal{W}\子集\mathcal{D}$和$[\mathcal{D},\mathcal{D}]=\mathcal{E}$。此外,我们还研究了$\mathcal{W}$的一个截面是非奇异的morse - small的情况,得到了$\mathcal{D}$整体存在的一个充分条件。作为一个推论,我们得到了$3$流形上的非奇异向量场$W$对于接触结构$\mathcal{D}$是Legendrian的条件。同样地,我们可以用这些技术来研究当一个偶接触结构$\mathcal{E}\子集TM^4$被一个恩格尔结构$\mathcal{D}$诱导时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the dynamics of some vector fields tangent to non-integrable plane fields
Let $\mathcal{E}^3\subset TM^n$ be a smooth $3$-distribution on a smooth manifold of dimension $n$ and $\mathcal{W}\subset\mathcal{E}$ a line field such that $[\mathcal{W},\mathcal{E}]\subset\mathcal{E}$. Under some orientability hypothesis, we give a necessary condition for the existence of a plane field $\mathcal{D}^2$ such that $\mathcal{W}\subset\mathcal{D}$ and $[\mathcal{D},\mathcal{D}]=\mathcal{E}$. Moreover we study the case where a section of $\mathcal{W}$ is non-singular Morse-Smale and we get a sufficient condition for the global existence of $\mathcal{D}$. As a corollary we get conditions for a non-singular vector field $W$ on a $3$-manifold to be Legendrian for a contact structure $\mathcal{D}$. Similarly with these techniques we can study when an even contact structure $\mathcal{E}\subset TM^4$ is induced by an Engel structure $\mathcal{D}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信