利用谱关系求解位置和时间的混合积分方程

M.A. Abdou, M. Basseem
{"title":"利用谱关系求解位置和时间的混合积分方程","authors":"M.A. Abdou,&nbsp;M. Basseem","doi":"10.1016/j.jaubas.2016.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the existence of a unique solution of Fredholm–Volterra integral equation of the second kind is guaranteed. The Fredholm integral term is assumed in position with bad kernel, while the Volterra integral term is considered in time with continuous kernel. Under certain conditions and new discussions, the bad kernel will tend to a logarithmic kernel. Then, using Chebyshev polynomial, a main theorem of spectral relationships of Fredholm integral equation of the first kind with logarithmic kernel multiplying by a smooth kernel is stated and used to obtain numerically the Fredholm–Volterra integral equation of the second kind. Finally, numerical results are obtained and the error, in each case, is computed.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"23 ","pages":"Pages 52-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.05.001","citationCount":"7","resultStr":"{\"title\":\"Solution of mixed integral equation in position and time using spectral relationships\",\"authors\":\"M.A. Abdou,&nbsp;M. Basseem\",\"doi\":\"10.1016/j.jaubas.2016.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the existence of a unique solution of Fredholm–Volterra integral equation of the second kind is guaranteed. The Fredholm integral term is assumed in position with bad kernel, while the Volterra integral term is considered in time with continuous kernel. Under certain conditions and new discussions, the bad kernel will tend to a logarithmic kernel. Then, using Chebyshev polynomial, a main theorem of spectral relationships of Fredholm integral equation of the first kind with logarithmic kernel multiplying by a smooth kernel is stated and used to obtain numerically the Fredholm–Volterra integral equation of the second kind. Finally, numerical results are obtained and the error, in each case, is computed.</p></div>\",\"PeriodicalId\":17232,\"journal\":{\"name\":\"Journal of the Association of Arab Universities for Basic and Applied Sciences\",\"volume\":\"23 \",\"pages\":\"Pages 52-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.05.001\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association of Arab Universities for Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1815385216300062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385216300062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文保证了第二类Fredholm-Volterra积分方程唯一解的存在性。假设Fredholm积分项在有坏核的位置上,而Volterra积分项在有连续核的时间上考虑。在某些条件和新的讨论下,坏核将趋向于对数核。然后,利用Chebyshev多项式,给出了第一类带对数核乘光滑核的Fredholm积分方程的谱关系的一个主要定理,并应用该定理对第二类Fredholm - volterra积分方程进行了数值求解。最后给出了数值结果,并计算了每种情况下的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of mixed integral equation in position and time using spectral relationships

In this article, the existence of a unique solution of Fredholm–Volterra integral equation of the second kind is guaranteed. The Fredholm integral term is assumed in position with bad kernel, while the Volterra integral term is considered in time with continuous kernel. Under certain conditions and new discussions, the bad kernel will tend to a logarithmic kernel. Then, using Chebyshev polynomial, a main theorem of spectral relationships of Fredholm integral equation of the first kind with logarithmic kernel multiplying by a smooth kernel is stated and used to obtain numerically the Fredholm–Volterra integral equation of the second kind. Finally, numerical results are obtained and the error, in each case, is computed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信