George G. Cabral, Leandro L. Minku, Emad Shihab, Suhaib Mujahid
{"title":"实时软件缺陷预测中的类不平衡演化与验证延迟","authors":"George G. Cabral, Leandro L. Minku, Emad Shihab, Suhaib Mujahid","doi":"10.1109/ICSE.2019.00076","DOIUrl":null,"url":null,"abstract":"Just-in-Time Software Defect Prediction (JIT-SDP) is an SDP approach that makes defect predictions at the software change level. Most existing JIT-SDP work assumes that the characteristics of the problem remain the same over time. However, JIT-SDP may suffer from class imbalance evolution. Specifically, the imbalance status of the problem (i.e., how much underrepresented the defect-inducing changes are) may be intensified or reduced over time. If occurring, this could render existing JIT-SDP approaches unsuitable, including those that re-build classifiers over time using only recent data. This work thus provides the first investigation of whether class imbalance evolution poses a threat to JIT-SDP. This investigation is performed in a realistic scenario by taking into account verification latency -- the often overlooked fact that labeled training examples arrive with a delay. Based on 10 GitHub projects, we show that JIT-SDP suffers from class imbalance evolution, significantly hindering the predictive performance of existing JIT-SDP approaches. Compared to state-of-the-art class imbalance evolution learning approaches, the predictive performance of JIT-SDP approaches was up to 97.2% lower in terms of g-mean. Hence, it is essential to tackle class imbalance evolution in JIT-SDP. We then propose a novel class imbalance evolution approach for the specific context of JIT-SDP. While maintaining top ranked g-means, this approach managed to produce up to 63.59% more balanced recalls on the defect-inducing and clean classes than state-of-the-art class imbalance evolution approaches. We thus recommend it to avoid overemphasizing one class over the other in JIT-SDP.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"99 1","pages":"666-676"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Class Imbalance Evolution and Verification Latency in Just-in-Time Software Defect Prediction\",\"authors\":\"George G. Cabral, Leandro L. Minku, Emad Shihab, Suhaib Mujahid\",\"doi\":\"10.1109/ICSE.2019.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Just-in-Time Software Defect Prediction (JIT-SDP) is an SDP approach that makes defect predictions at the software change level. Most existing JIT-SDP work assumes that the characteristics of the problem remain the same over time. However, JIT-SDP may suffer from class imbalance evolution. Specifically, the imbalance status of the problem (i.e., how much underrepresented the defect-inducing changes are) may be intensified or reduced over time. If occurring, this could render existing JIT-SDP approaches unsuitable, including those that re-build classifiers over time using only recent data. This work thus provides the first investigation of whether class imbalance evolution poses a threat to JIT-SDP. This investigation is performed in a realistic scenario by taking into account verification latency -- the often overlooked fact that labeled training examples arrive with a delay. Based on 10 GitHub projects, we show that JIT-SDP suffers from class imbalance evolution, significantly hindering the predictive performance of existing JIT-SDP approaches. Compared to state-of-the-art class imbalance evolution learning approaches, the predictive performance of JIT-SDP approaches was up to 97.2% lower in terms of g-mean. Hence, it is essential to tackle class imbalance evolution in JIT-SDP. We then propose a novel class imbalance evolution approach for the specific context of JIT-SDP. While maintaining top ranked g-means, this approach managed to produce up to 63.59% more balanced recalls on the defect-inducing and clean classes than state-of-the-art class imbalance evolution approaches. We thus recommend it to avoid overemphasizing one class over the other in JIT-SDP.\",\"PeriodicalId\":6736,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"volume\":\"99 1\",\"pages\":\"666-676\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2019.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Class Imbalance Evolution and Verification Latency in Just-in-Time Software Defect Prediction
Just-in-Time Software Defect Prediction (JIT-SDP) is an SDP approach that makes defect predictions at the software change level. Most existing JIT-SDP work assumes that the characteristics of the problem remain the same over time. However, JIT-SDP may suffer from class imbalance evolution. Specifically, the imbalance status of the problem (i.e., how much underrepresented the defect-inducing changes are) may be intensified or reduced over time. If occurring, this could render existing JIT-SDP approaches unsuitable, including those that re-build classifiers over time using only recent data. This work thus provides the first investigation of whether class imbalance evolution poses a threat to JIT-SDP. This investigation is performed in a realistic scenario by taking into account verification latency -- the often overlooked fact that labeled training examples arrive with a delay. Based on 10 GitHub projects, we show that JIT-SDP suffers from class imbalance evolution, significantly hindering the predictive performance of existing JIT-SDP approaches. Compared to state-of-the-art class imbalance evolution learning approaches, the predictive performance of JIT-SDP approaches was up to 97.2% lower in terms of g-mean. Hence, it is essential to tackle class imbalance evolution in JIT-SDP. We then propose a novel class imbalance evolution approach for the specific context of JIT-SDP. While maintaining top ranked g-means, this approach managed to produce up to 63.59% more balanced recalls on the defect-inducing and clean classes than state-of-the-art class imbalance evolution approaches. We thus recommend it to avoid overemphasizing one class over the other in JIT-SDP.