基于点的多染色组织学图像配准

Jiehua Zhang, Zhang Li, Qifeng Yu
{"title":"基于点的多染色组织学图像配准","authors":"Jiehua Zhang, Zhang Li, Qifeng Yu","doi":"10.1109/ICIVC50857.2020.9177486","DOIUrl":null,"url":null,"abstract":"Image registration is a basic task in biological image processing. Different stained histology images contain different clinical information, which could assist pathologists to diagnose a certain disease. It is necessary to improve the accuracy of image registration. In this paper, we present a robust registration method that consists of three steps: 1) extracting match points; 2) a pre-alignment consisting of a rigid transformation and an affine transformation on the coarse level; 3) an accurate non-rigid registration optimized by the extracted points. The existing methods use the features of the image pair to initial alignment. We proposed a new metric for the non-rigid transformation which adding the part of optimizing extracting points into the original metric. We evaluate our method on the dataset from the ANHIR Registration Challenge and use MrTRE (median relative target registration error) to measure the performance on the training data. The test result illustrates that the presented method is accurate and robust.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"41 1","pages":"92-96"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Point-Based Registration for Multi-stained Histology Images\",\"authors\":\"Jiehua Zhang, Zhang Li, Qifeng Yu\",\"doi\":\"10.1109/ICIVC50857.2020.9177486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image registration is a basic task in biological image processing. Different stained histology images contain different clinical information, which could assist pathologists to diagnose a certain disease. It is necessary to improve the accuracy of image registration. In this paper, we present a robust registration method that consists of three steps: 1) extracting match points; 2) a pre-alignment consisting of a rigid transformation and an affine transformation on the coarse level; 3) an accurate non-rigid registration optimized by the extracted points. The existing methods use the features of the image pair to initial alignment. We proposed a new metric for the non-rigid transformation which adding the part of optimizing extracting points into the original metric. We evaluate our method on the dataset from the ANHIR Registration Challenge and use MrTRE (median relative target registration error) to measure the performance on the training data. The test result illustrates that the presented method is accurate and robust.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"41 1\",\"pages\":\"92-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像配准是生物图像处理中的一项基本任务。不同的染色组织学图像包含不同的临床信息,这些信息可以帮助病理学家诊断某种疾病。提高图像配准的精度是很有必要的。本文提出了一种鲁棒配准方法,该方法分为三个步骤:1)提取匹配点;2)由粗层上的刚性变换和仿射变换组成的预对准;3)提取点优化的精确非刚性配准。现有的方法是利用图像对的特征进行初始对齐。提出了一种新的非刚性变换度量,将优化提取点的部分加入到原度量中。我们在来自ANHIR注册挑战的数据集上评估我们的方法,并使用MrTRE(中位数相对目标注册误差)来衡量训练数据上的性能。实验结果表明,该方法具有较好的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point-Based Registration for Multi-stained Histology Images
Image registration is a basic task in biological image processing. Different stained histology images contain different clinical information, which could assist pathologists to diagnose a certain disease. It is necessary to improve the accuracy of image registration. In this paper, we present a robust registration method that consists of three steps: 1) extracting match points; 2) a pre-alignment consisting of a rigid transformation and an affine transformation on the coarse level; 3) an accurate non-rigid registration optimized by the extracted points. The existing methods use the features of the image pair to initial alignment. We proposed a new metric for the non-rigid transformation which adding the part of optimizing extracting points into the original metric. We evaluate our method on the dataset from the ANHIR Registration Challenge and use MrTRE (median relative target registration error) to measure the performance on the training data. The test result illustrates that the presented method is accurate and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信