探索葡萄牙语农业自由文本意图类自动识别的监督技术

Daniel Felix Brito, Jarbas Lopes Cardoso Júnior, Júlio Cesar dos Reis, Guilherme Ruppert, R. Bonacin
{"title":"探索葡萄牙语农业自由文本意图类自动识别的监督技术","authors":"Daniel Felix Brito, Jarbas Lopes Cardoso Júnior, Júlio Cesar dos Reis, Guilherme Ruppert, R. Bonacin","doi":"10.22456/2175-2745.117481","DOIUrl":null,"url":null,"abstract":"Technical and scientific knowledge is vast and complex, particularly in interdisciplinary fields such as sustainable agriculture, which is available in several interrelated, geographically dispersed and interdisciplinary online textual information sources. In this context, it is essential to support people with computational mechanisms that allow them to retrieve and interpret information in an appropriate way, as communication in these software systems is typically asynchronous and textual. User’s intention recognition and analysis in textual documents results in benefits for better information retrieval. However, intentions are expressed implicitly in texts in natural language and the specificities of the domain and cultural aspects of language make it difficult to process and analyze the text by computer systems. This requires the study of methods for the automatic recognition of intention classes in text. In this article, we conduct extensive experimental analyses on techniques based on language models and machine learning to detect instances of intention classes in texts about sustainable agriculture written in Portuguese. In our methodology, we perform a morphological analysis of the sentences and evaluate four Word Embeddings techniques (Word2Vec, Wang2Vec, FastText and Glove) combined with four machine learning techniques (Support Vector Machine, Artificial Neural Network, Random Forest and Transfer Learning). The results obtained by applying the techniques proposed in a database with textual information on sustainable agriculture indicate promising possibilities in the recognition of intentions in free texts  in  Portuguese language on sustainable agriculture.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":"35 1","pages":"95-120"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Supervised Techniques for Automated Recognition of Intention Classes from Portuguese Free Texts on Agriculture\",\"authors\":\"Daniel Felix Brito, Jarbas Lopes Cardoso Júnior, Júlio Cesar dos Reis, Guilherme Ruppert, R. Bonacin\",\"doi\":\"10.22456/2175-2745.117481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical and scientific knowledge is vast and complex, particularly in interdisciplinary fields such as sustainable agriculture, which is available in several interrelated, geographically dispersed and interdisciplinary online textual information sources. In this context, it is essential to support people with computational mechanisms that allow them to retrieve and interpret information in an appropriate way, as communication in these software systems is typically asynchronous and textual. User’s intention recognition and analysis in textual documents results in benefits for better information retrieval. However, intentions are expressed implicitly in texts in natural language and the specificities of the domain and cultural aspects of language make it difficult to process and analyze the text by computer systems. This requires the study of methods for the automatic recognition of intention classes in text. In this article, we conduct extensive experimental analyses on techniques based on language models and machine learning to detect instances of intention classes in texts about sustainable agriculture written in Portuguese. In our methodology, we perform a morphological analysis of the sentences and evaluate four Word Embeddings techniques (Word2Vec, Wang2Vec, FastText and Glove) combined with four machine learning techniques (Support Vector Machine, Artificial Neural Network, Random Forest and Transfer Learning). The results obtained by applying the techniques proposed in a database with textual information on sustainable agriculture indicate promising possibilities in the recognition of intentions in free texts  in  Portuguese language on sustainable agriculture.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":\"35 1\",\"pages\":\"95-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.117481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.117481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

技术和科学知识广泛而复杂,特别是在跨学科领域,如可持续农业,这些知识可以在几个相互关联的、地理分散的和跨学科的在线文本信息来源中获得。在这种情况下,有必要为人们提供计算机制,使他们能够以适当的方式检索和解释信息,因为这些软件系统中的通信通常是异步的和文本的。文本文档中用户意图的识别和分析有利于更好的信息检索。然而,意图隐含地表达在自然语言的文本中,语言的领域和文化方面的特殊性使得计算机系统难以处理和分析文本。这就需要对文本中意向类的自动识别方法进行研究。在本文中,我们对基于语言模型和机器学习的技术进行了广泛的实验分析,以检测用葡萄牙语写的关于可持续农业的文本中的意图类实例。在我们的方法中,我们对句子进行了形态学分析,并评估了四种词嵌入技术(Word2Vec、Wang2Vec、FastText和Glove)以及四种机器学习技术(支持向量机、人工神经网络、随机森林和迁移学习)。通过应用可持续农业文本信息数据库中提出的技术获得的结果表明,在葡萄牙语可持续农业免费文本中识别意图的可能性很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Supervised Techniques for Automated Recognition of Intention Classes from Portuguese Free Texts on Agriculture
Technical and scientific knowledge is vast and complex, particularly in interdisciplinary fields such as sustainable agriculture, which is available in several interrelated, geographically dispersed and interdisciplinary online textual information sources. In this context, it is essential to support people with computational mechanisms that allow them to retrieve and interpret information in an appropriate way, as communication in these software systems is typically asynchronous and textual. User’s intention recognition and analysis in textual documents results in benefits for better information retrieval. However, intentions are expressed implicitly in texts in natural language and the specificities of the domain and cultural aspects of language make it difficult to process and analyze the text by computer systems. This requires the study of methods for the automatic recognition of intention classes in text. In this article, we conduct extensive experimental analyses on techniques based on language models and machine learning to detect instances of intention classes in texts about sustainable agriculture written in Portuguese. In our methodology, we perform a morphological analysis of the sentences and evaluate four Word Embeddings techniques (Word2Vec, Wang2Vec, FastText and Glove) combined with four machine learning techniques (Support Vector Machine, Artificial Neural Network, Random Forest and Transfer Learning). The results obtained by applying the techniques proposed in a database with textual information on sustainable agriculture indicate promising possibilities in the recognition of intentions in free texts  in  Portuguese language on sustainable agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信