管状子流形上的可积测地线流

Q3 Mathematics
Томас Уотерс
{"title":"管状子流形上的可积测地线流","authors":"Томас Уотерс","doi":"10.15673/TMGC.V10I3-4.770","DOIUrl":null,"url":null,"abstract":"In this paper we construct a new class of surfaces whose geodesic flow is integrable (in the sense of Liouville). We do so by generalizing the notion of tubes about curves to 3-dimensional manifolds, and using Jacobi fields we derive conditions under which the metric of the generalized tubular sub-manifold admits an ignorable coordinate. Some examples are given, demonstrating that these special surfaces can be quite elaborate and varied.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable geodesic flows on tubular sub-manifolds\",\"authors\":\"Томас Уотерс\",\"doi\":\"10.15673/TMGC.V10I3-4.770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we construct a new class of surfaces whose geodesic flow is integrable (in the sense of Liouville). We do so by generalizing the notion of tubes about curves to 3-dimensional manifolds, and using Jacobi fields we derive conditions under which the metric of the generalized tubular sub-manifold admits an ignorable coordinate. Some examples are given, demonstrating that these special surfaces can be quite elaborate and varied.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V10I3-4.770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V10I3-4.770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一类新的曲面,其测地线流是可积的(在Liouville意义上)。我们将关于曲线的管的概念推广到三维流形,并利用雅可比域推导出广义管形子流形的度规允许一个可忽略坐标的条件。文中给出了一些例子,表明这些特殊的表面可以非常精细和多样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable geodesic flows on tubular sub-manifolds
In this paper we construct a new class of surfaces whose geodesic flow is integrable (in the sense of Liouville). We do so by generalizing the notion of tubes about curves to 3-dimensional manifolds, and using Jacobi fields we derive conditions under which the metric of the generalized tubular sub-manifold admits an ignorable coordinate. Some examples are given, demonstrating that these special surfaces can be quite elaborate and varied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信