{"title":"光滑三次面及其切线的扎里斯基元组","authors":"S. Bannai, H. Tokunaga","doi":"10.3792/pjaa.96.004","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geometry of two-torsion points of elliptic curves in order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic and its tangent lines. As a result, we obtain a new family of Zariski N-ples consisting of such curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Zariski tuples for a smooth cubic and its tangent lines\",\"authors\":\"S. Bannai, H. Tokunaga\",\"doi\":\"10.3792/pjaa.96.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the geometry of two-torsion points of elliptic curves in order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic and its tangent lines. As a result, we obtain a new family of Zariski N-ples consisting of such curves.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.96.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.96.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
为了区分由光滑三次面及其切线组成的可约平面曲线的内嵌拓扑,本文研究了椭圆曲线的双扭转点几何。结果,我们得到了一个由这样的曲线组成的新的Zariski n -ple族。
Zariski tuples for a smooth cubic and its tangent lines
In this paper, we study the geometry of two-torsion points of elliptic curves in order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic and its tangent lines. As a result, we obtain a new family of Zariski N-ples consisting of such curves.