射影平面PG(2,5)中的最大值(k, n)-弧

Najim Ismaeel
{"title":"射影平面PG(2,5)中的最大值(k, n)-弧","authors":"Najim Ismaeel","doi":"10.24271/GARMIAN.129","DOIUrl":null,"url":null,"abstract":"In this paper we recognize maximal (k, n)-arcs in the projective plane PG (2,5), n = 2, 3, ...,5, where a (k, n)-arc K in a projective plane is a set of K pointssuch that no n + 1 of which are collinear. A (k, n) – arc is a maximal if and only ifevery line in the projective plane PG (2, P) is a O-secant, or n-secant, whichrepresented as ( k, 2 )-arc and (k, 6)-arc. A (k, n)-arc is complete if it is notcontained in a (k + 1, n) – arc.","PeriodicalId":12283,"journal":{"name":"Evaluation Study of Three Diagnostic Methods for Helicobacter pylori Infection","volume":"9 1","pages":"113-121"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal (k, n)-arc in Projective Plane PG(2, 5)\",\"authors\":\"Najim Ismaeel\",\"doi\":\"10.24271/GARMIAN.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we recognize maximal (k, n)-arcs in the projective plane PG (2,5), n = 2, 3, ...,5, where a (k, n)-arc K in a projective plane is a set of K pointssuch that no n + 1 of which are collinear. A (k, n) – arc is a maximal if and only ifevery line in the projective plane PG (2, P) is a O-secant, or n-secant, whichrepresented as ( k, 2 )-arc and (k, 6)-arc. A (k, n)-arc is complete if it is notcontained in a (k + 1, n) – arc.\",\"PeriodicalId\":12283,\"journal\":{\"name\":\"Evaluation Study of Three Diagnostic Methods for Helicobacter pylori Infection\",\"volume\":\"9 1\",\"pages\":\"113-121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evaluation Study of Three Diagnostic Methods for Helicobacter pylori Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24271/GARMIAN.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evaluation Study of Three Diagnostic Methods for Helicobacter pylori Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24271/GARMIAN.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在射影平面PG (2,5), n = 2,3,…中识别极大(k, n)-弧。,5,其中a (k, n)- arck在投影平面上是k个点的集合,使得没有n + 1个点共线。A (k, n) -arc是极大值,当且仅当投影平面PG (2, P)中的每条线都是o -sec或n-sec,表示为(k, 2)-arc和(k, 6)-arc。如果(k, n)-弧中不包含(k + 1, n)-弧,则A (k, n)-弧是完全弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal (k, n)-arc in Projective Plane PG(2, 5)
In this paper we recognize maximal (k, n)-arcs in the projective plane PG (2,5), n = 2, 3, ...,5, where a (k, n)-arc K in a projective plane is a set of K pointssuch that no n + 1 of which are collinear. A (k, n) – arc is a maximal if and only ifevery line in the projective plane PG (2, P) is a O-secant, or n-secant, whichrepresented as ( k, 2 )-arc and (k, 6)-arc. A (k, n)-arc is complete if it is notcontained in a (k + 1, n) – arc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信