干旱气候条件下海底碳酸盐岩台地峡谷系统沉积动力学与地貌特征

IF 2.6 2区 地球科学 Q1 GEOLOGY
Sedimentology Pub Date : 2023-06-20 DOI:10.1111/sed.13120
A. Petrovic, J. Reijmer, Sayed Hassan Majed Alsaihati, Dominik Nommensen, V. Vahrenkamp
{"title":"干旱气候条件下海底碳酸盐岩台地峡谷系统沉积动力学与地貌特征","authors":"A. Petrovic, J. Reijmer, Sayed Hassan Majed Alsaihati, Dominik Nommensen, V. Vahrenkamp","doi":"10.1111/sed.13120","DOIUrl":null,"url":null,"abstract":"Changes in neritic carbonate production and sediment transport off platforms are related to climate variations, sea‐level fluctuations and tectonic processes. Canyon systems marking the platform slopes represent critical source‐to‐sink pathways transporting shallow‐water sediments basinward. However, these export systems and related processes are primarily studied on platform slopes in humid to tropical climate settings. A newly discovered canyon system on the leeward margin of the Al Wajh platform (north‐east Red Sea) represents the ideal laboratory to investigate source‐to‐sink pathway dynamics in an arid climate that prevailed since the Late Pleistocene. A high‐resolution bathymetry map was established to characterize the slope morphology. The system displays a U‐shaped, 10 km long main channel dominantly sourced by the north‐west/south‐east running outer channel and two smaller 2 to 3 km long canyons. The latter are positioned perpendicular to the main canyon. A 4 km wide head scarp at the reef edge and dozens of amphitheatre‐shaped scarps along the mid to lower slope suggest significant slope failures over time. The analysis of four sediment cores collected on a profile down the canyon revealed sedimentation rates of 26 cm/ka at the mid‐slope to 9.4 cm/ka in the basin. Three main sediment‐export processes were identified: (i) sandy and neritic component‐poor turbidites; (ii) winnowing of strontium‐rich carbonate fines through surface currents; and (iii) remobilized carbonate fines on the upper slope. As of the Last Glacial, turbidites are predominantly deposited during times of significant sea‐level instability, both rises and falls, whereas their flat‐topped‐tropical counterparts show a higher turbidite frequency during highstands. Strontium‐rich carbonate fines are exported similarly through time in both climate settings. Overall, sediment export is controlled by: (i) the platform morphology (flat‐topped versus rimmed lagoon); (ii) variations in sediment production; (iii) sea‐level variations (exposure or flooding of sediment production areas); and (iv) the interaction between the sedimentary system and atmospheric changes (sediment production and delivery).","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment dynamics and geomorphology of a submarine carbonate platform canyon system situated in an arid climate setting\",\"authors\":\"A. Petrovic, J. Reijmer, Sayed Hassan Majed Alsaihati, Dominik Nommensen, V. Vahrenkamp\",\"doi\":\"10.1111/sed.13120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in neritic carbonate production and sediment transport off platforms are related to climate variations, sea‐level fluctuations and tectonic processes. Canyon systems marking the platform slopes represent critical source‐to‐sink pathways transporting shallow‐water sediments basinward. However, these export systems and related processes are primarily studied on platform slopes in humid to tropical climate settings. A newly discovered canyon system on the leeward margin of the Al Wajh platform (north‐east Red Sea) represents the ideal laboratory to investigate source‐to‐sink pathway dynamics in an arid climate that prevailed since the Late Pleistocene. A high‐resolution bathymetry map was established to characterize the slope morphology. The system displays a U‐shaped, 10 km long main channel dominantly sourced by the north‐west/south‐east running outer channel and two smaller 2 to 3 km long canyons. The latter are positioned perpendicular to the main canyon. A 4 km wide head scarp at the reef edge and dozens of amphitheatre‐shaped scarps along the mid to lower slope suggest significant slope failures over time. The analysis of four sediment cores collected on a profile down the canyon revealed sedimentation rates of 26 cm/ka at the mid‐slope to 9.4 cm/ka in the basin. Three main sediment‐export processes were identified: (i) sandy and neritic component‐poor turbidites; (ii) winnowing of strontium‐rich carbonate fines through surface currents; and (iii) remobilized carbonate fines on the upper slope. As of the Last Glacial, turbidites are predominantly deposited during times of significant sea‐level instability, both rises and falls, whereas their flat‐topped‐tropical counterparts show a higher turbidite frequency during highstands. Strontium‐rich carbonate fines are exported similarly through time in both climate settings. Overall, sediment export is controlled by: (i) the platform morphology (flat‐topped versus rimmed lagoon); (ii) variations in sediment production; (iii) sea‐level variations (exposure or flooding of sediment production areas); and (iv) the interaction between the sedimentary system and atmospheric changes (sediment production and delivery).\",\"PeriodicalId\":21838,\"journal\":{\"name\":\"Sedimentology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sedimentology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/sed.13120\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/sed.13120","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sediment dynamics and geomorphology of a submarine carbonate platform canyon system situated in an arid climate setting
Changes in neritic carbonate production and sediment transport off platforms are related to climate variations, sea‐level fluctuations and tectonic processes. Canyon systems marking the platform slopes represent critical source‐to‐sink pathways transporting shallow‐water sediments basinward. However, these export systems and related processes are primarily studied on platform slopes in humid to tropical climate settings. A newly discovered canyon system on the leeward margin of the Al Wajh platform (north‐east Red Sea) represents the ideal laboratory to investigate source‐to‐sink pathway dynamics in an arid climate that prevailed since the Late Pleistocene. A high‐resolution bathymetry map was established to characterize the slope morphology. The system displays a U‐shaped, 10 km long main channel dominantly sourced by the north‐west/south‐east running outer channel and two smaller 2 to 3 km long canyons. The latter are positioned perpendicular to the main canyon. A 4 km wide head scarp at the reef edge and dozens of amphitheatre‐shaped scarps along the mid to lower slope suggest significant slope failures over time. The analysis of four sediment cores collected on a profile down the canyon revealed sedimentation rates of 26 cm/ka at the mid‐slope to 9.4 cm/ka in the basin. Three main sediment‐export processes were identified: (i) sandy and neritic component‐poor turbidites; (ii) winnowing of strontium‐rich carbonate fines through surface currents; and (iii) remobilized carbonate fines on the upper slope. As of the Last Glacial, turbidites are predominantly deposited during times of significant sea‐level instability, both rises and falls, whereas their flat‐topped‐tropical counterparts show a higher turbidite frequency during highstands. Strontium‐rich carbonate fines are exported similarly through time in both climate settings. Overall, sediment export is controlled by: (i) the platform morphology (flat‐topped versus rimmed lagoon); (ii) variations in sediment production; (iii) sea‐level variations (exposure or flooding of sediment production areas); and (iv) the interaction between the sedimentary system and atmospheric changes (sediment production and delivery).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sedimentology
Sedimentology 地学-地质学
CiteScore
8.20
自引率
11.40%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The international leader in its field, Sedimentology publishes ground-breaking research from across the spectrum of sedimentology, sedimentary geology and sedimentary geochemistry. Areas covered include: experimental and theoretical grain transport; sediment fluxes; modern and ancient sedimentary environments; sequence stratigraphy sediment-organism interaction; palaeosoils; diagenesis; stable isotope geochemistry; environmental sedimentology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信