{"title":"基于残差学习的茶树病害识别模型","authors":"Manabendra Nath, Pinaki S. Mitra, Deepak Kumar","doi":"10.1080/1206212X.2023.2235750","DOIUrl":null,"url":null,"abstract":"Tea is one of the most valuable crops in many tea-producing countries. However, tea plants are vulnerable to various diseases, which reduce tea production. Early diagnosis of diseases is crucial to averting their detrimental effects on the growth and quality of tea. Conventional disease identification methods depend on the manual analysis of disease features by experts, which is time-consuming and resource-intensive. Moreover, published approaches based on computer vision left a broad scope for improving accuracy and reducing computational costs. This work attempts to design an automated learning-based model by leveraging the power of deep learning methods with reduced computational costs for accurately identifying tea diseases. The proposed work uses a Convolutional Neural Network architecture based on depthwise separable convolutions and residual networks integrated with a Support Vector Machine. Additionally, an attention module is added to the model for precise extraction of disease features. An image dataset is constructed comprising the images of healthy and diseased tea leaves infected with blister blight, grey blight, and red rust. The performance of the proposed model is evaluated on the self-generated tea dataset and compared with eight other state-of-the-art deep-learning models to establish its significance. The model achieves an overall accuracy of 99.28%.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"45 1","pages":"471 - 484"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel residual learning-based deep learning model integrated with attention mechanism and SVM for identifying tea plant diseases\",\"authors\":\"Manabendra Nath, Pinaki S. Mitra, Deepak Kumar\",\"doi\":\"10.1080/1206212X.2023.2235750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tea is one of the most valuable crops in many tea-producing countries. However, tea plants are vulnerable to various diseases, which reduce tea production. Early diagnosis of diseases is crucial to averting their detrimental effects on the growth and quality of tea. Conventional disease identification methods depend on the manual analysis of disease features by experts, which is time-consuming and resource-intensive. Moreover, published approaches based on computer vision left a broad scope for improving accuracy and reducing computational costs. This work attempts to design an automated learning-based model by leveraging the power of deep learning methods with reduced computational costs for accurately identifying tea diseases. The proposed work uses a Convolutional Neural Network architecture based on depthwise separable convolutions and residual networks integrated with a Support Vector Machine. Additionally, an attention module is added to the model for precise extraction of disease features. An image dataset is constructed comprising the images of healthy and diseased tea leaves infected with blister blight, grey blight, and red rust. The performance of the proposed model is evaluated on the self-generated tea dataset and compared with eight other state-of-the-art deep-learning models to establish its significance. The model achieves an overall accuracy of 99.28%.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"45 1\",\"pages\":\"471 - 484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212X.2023.2235750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2235750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A novel residual learning-based deep learning model integrated with attention mechanism and SVM for identifying tea plant diseases
Tea is one of the most valuable crops in many tea-producing countries. However, tea plants are vulnerable to various diseases, which reduce tea production. Early diagnosis of diseases is crucial to averting their detrimental effects on the growth and quality of tea. Conventional disease identification methods depend on the manual analysis of disease features by experts, which is time-consuming and resource-intensive. Moreover, published approaches based on computer vision left a broad scope for improving accuracy and reducing computational costs. This work attempts to design an automated learning-based model by leveraging the power of deep learning methods with reduced computational costs for accurately identifying tea diseases. The proposed work uses a Convolutional Neural Network architecture based on depthwise separable convolutions and residual networks integrated with a Support Vector Machine. Additionally, an attention module is added to the model for precise extraction of disease features. An image dataset is constructed comprising the images of healthy and diseased tea leaves infected with blister blight, grey blight, and red rust. The performance of the proposed model is evaluated on the self-generated tea dataset and compared with eight other state-of-the-art deep-learning models to establish its significance. The model achieves an overall accuracy of 99.28%.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.