考虑辐射因素的萨特比纳米流体化学反应流的熵产分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
W. Khan, N. Anjum, A. Hobiny, Mehboob Ali
{"title":"考虑辐射因素的萨特比纳米流体化学反应流的熵产分析","authors":"W. Khan, N. Anjum, A. Hobiny, Mehboob Ali","doi":"10.24200/sci.2023.60105.6594","DOIUrl":null,"url":null,"abstract":": Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects\",\"authors\":\"W. Khan, N. Anjum, A. Hobiny, Mehboob Ali\",\"doi\":\"10.24200/sci.2023.60105.6594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.60105.6594\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.60105.6594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

纳米流体表现出更高的传热率和使用纳米尺寸的硬元素来减小机械摩擦的特征。此外,在传热流体的工作方面,纳米流体被广泛应用于制冷、船舶、汽车、化工、能源、电子、空调、计算机等诸多领域,以解决传热问题。上述应用促使我们在可渗透表面配置的萨特比纳米流体流动中遇到熵生成方面的问题。此外,还提出了著名的Buongiorno模型,该模型捕获了布朗扩散和热泳扩散的相同属性,用于建模和研究。此外,(MHD)和热辐射效应是当前工作的一部分。在这里,我们还考虑了粘性耗散方面。利用相似变量将非线性偏微分方程分解为一组偏微分方程,然后用bvp4c算法进行数值解析,并对相关参数进行了图形化处理。借助图形解释了流体流动、温度、浓度随相关参数变化的物理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects
: Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信