{"title":"考虑辐射因素的萨特比纳米流体化学反应流的熵产分析","authors":"W. Khan, N. Anjum, A. Hobiny, Mehboob Ali","doi":"10.24200/sci.2023.60105.6594","DOIUrl":null,"url":null,"abstract":": Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects\",\"authors\":\"W. Khan, N. Anjum, A. Hobiny, Mehboob Ali\",\"doi\":\"10.24200/sci.2023.60105.6594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.60105.6594\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.60105.6594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects
: Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.