基于异构用户内容偏好的联合用户聚类和内容缓存

Feng Chiu, Ting-Yu Kuo, Feng-Tsun Chien, Wan-Jen Huang, Min-Kuan Chang
{"title":"基于异构用户内容偏好的联合用户聚类和内容缓存","authors":"Feng Chiu, Ting-Yu Kuo, Feng-Tsun Chien, Wan-Jen Huang, Min-Kuan Chang","doi":"10.1109/IEEECONF44664.2019.9048847","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a joint design of the user clustering and content caching in the cache-enabled heterogenous network (HetNet) in which users in the network have distinct content preferences. The joint clustering and caching in the HetNet relies on multitude of factors, such as channel gains in all links, which may not be fully known in practice. Besides, clustering and caching may exhibit a fundamental tradeoff between the content hit probability and the spectral efficiency. We are therefore motivated to tackle this challenging problem by the deep reinforcement learning (DRL). In particular, the deep deterministic policy gradient (DDPG) algorithm is employed to manage the dynamics of clustering and caching in the HetNet with a sizable action space. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"37 1","pages":"1314-1317"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint User Clustering and Content Caching with Heterogeneous User Content Preferences\",\"authors\":\"Feng Chiu, Ting-Yu Kuo, Feng-Tsun Chien, Wan-Jen Huang, Min-Kuan Chang\",\"doi\":\"10.1109/IEEECONF44664.2019.9048847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a joint design of the user clustering and content caching in the cache-enabled heterogenous network (HetNet) in which users in the network have distinct content preferences. The joint clustering and caching in the HetNet relies on multitude of factors, such as channel gains in all links, which may not be fully known in practice. Besides, clustering and caching may exhibit a fundamental tradeoff between the content hit probability and the spectral efficiency. We are therefore motivated to tackle this challenging problem by the deep reinforcement learning (DRL). In particular, the deep deterministic policy gradient (DDPG) algorithm is employed to manage the dynamics of clustering and caching in the HetNet with a sizable action space. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"37 1\",\"pages\":\"1314-1317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了在支持缓存的异构网络(HetNet)中用户集群和内容缓存的联合设计,其中网络中的用户具有不同的内容偏好。HetNet中的联合集群和缓存依赖于许多因素,例如所有链路中的通道增益,这些因素在实践中可能并不完全清楚。此外,聚类和缓存可能在内容命中概率和频谱效率之间表现出基本的权衡。因此,我们有动力通过深度强化学习(DRL)来解决这个具有挑战性的问题。特别地,采用深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法来管理具有较大操作空间的HetNet中的聚类和缓存动态。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint User Clustering and Content Caching with Heterogeneous User Content Preferences
In this paper, we consider a joint design of the user clustering and content caching in the cache-enabled heterogenous network (HetNet) in which users in the network have distinct content preferences. The joint clustering and caching in the HetNet relies on multitude of factors, such as channel gains in all links, which may not be fully known in practice. Besides, clustering and caching may exhibit a fundamental tradeoff between the content hit probability and the spectral efficiency. We are therefore motivated to tackle this challenging problem by the deep reinforcement learning (DRL). In particular, the deep deterministic policy gradient (DDPG) algorithm is employed to manage the dynamics of clustering and caching in the HetNet with a sizable action space. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信