正常和病理受试者24小时心率变异性信号的复杂动力学评估

M. Signorini, S. Guzzetti, R. Parola, S. Cerutti
{"title":"正常和病理受试者24小时心率变异性信号的复杂动力学评估","authors":"M. Signorini, S. Guzzetti, R. Parola, S. Cerutti","doi":"10.1109/CIC.1993.378419","DOIUrl":null,"url":null,"abstract":"Long term regulation of beat-to-beat variability involves a different kind of control. Parametric models provide quantitative indices which measure short time regulating action of the autonomic nervous system. In the long period instead, nonlinear contributions can be put into evidence by a chaotic deterministic approach. For heart rate variability (HRV) series collected in the 24 hours in 14 normal subjects and 28 subjects with cardiovascular pathologies (11 severe heart failure, 11 essential hypertensive and 6 heart transplant), we extract some parameters which are reputed to be invariant characteristic of system attractor: fractal dimension, Kolmogorov entropy and Lyapunov exponents. Geometric representations in the state space, such as delay maps and phase space plots, describe system trajectories through the singular value decomposition method. All these parameters confirm the existence of nonlinear dynamics in HRV signals and show different values for normal and pathological subjects: in particular we notice a reduction of the complexity of the discrete series when passing from normal to pathological subjects.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"12 1","pages":"401-404"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Complex dynamics assessment in 24-hour heart rate variability signals in normal and pathological subjects\",\"authors\":\"M. Signorini, S. Guzzetti, R. Parola, S. Cerutti\",\"doi\":\"10.1109/CIC.1993.378419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long term regulation of beat-to-beat variability involves a different kind of control. Parametric models provide quantitative indices which measure short time regulating action of the autonomic nervous system. In the long period instead, nonlinear contributions can be put into evidence by a chaotic deterministic approach. For heart rate variability (HRV) series collected in the 24 hours in 14 normal subjects and 28 subjects with cardiovascular pathologies (11 severe heart failure, 11 essential hypertensive and 6 heart transplant), we extract some parameters which are reputed to be invariant characteristic of system attractor: fractal dimension, Kolmogorov entropy and Lyapunov exponents. Geometric representations in the state space, such as delay maps and phase space plots, describe system trajectories through the singular value decomposition method. All these parameters confirm the existence of nonlinear dynamics in HRV signals and show different values for normal and pathological subjects: in particular we notice a reduction of the complexity of the discrete series when passing from normal to pathological subjects.<<ETX>>\",\"PeriodicalId\":20445,\"journal\":{\"name\":\"Proceedings of Computers in Cardiology Conference\",\"volume\":\"12 1\",\"pages\":\"401-404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Computers in Cardiology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.1993.378419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对心跳变异性的长期调节涉及一种不同的控制。参数化模型提供了定量的指标来衡量自主神经系统的短时调节作用。相反,在长周期内,非线性贡献可以通过混沌确定性方法证明。对14例正常受试者和28例心血管疾病患者(11例重度心力衰竭、11例原发性高血压和6例心脏移植)的24小时心率变异性(HRV)序列,提取了系统吸引子的不变特征参数:分形维数、Kolmogorov熵和Lyapunov指数。状态空间中的几何表示,如延迟映射和相空间图,通过奇异值分解方法描述系统轨迹。所有这些参数都证实了HRV信号中非线性动力学的存在,并且在正常受试者和病理受试者中显示出不同的值:特别是我们注意到从正常受试者到病理受试者传递时离散序列的复杂性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex dynamics assessment in 24-hour heart rate variability signals in normal and pathological subjects
Long term regulation of beat-to-beat variability involves a different kind of control. Parametric models provide quantitative indices which measure short time regulating action of the autonomic nervous system. In the long period instead, nonlinear contributions can be put into evidence by a chaotic deterministic approach. For heart rate variability (HRV) series collected in the 24 hours in 14 normal subjects and 28 subjects with cardiovascular pathologies (11 severe heart failure, 11 essential hypertensive and 6 heart transplant), we extract some parameters which are reputed to be invariant characteristic of system attractor: fractal dimension, Kolmogorov entropy and Lyapunov exponents. Geometric representations in the state space, such as delay maps and phase space plots, describe system trajectories through the singular value decomposition method. All these parameters confirm the existence of nonlinear dynamics in HRV signals and show different values for normal and pathological subjects: in particular we notice a reduction of the complexity of the discrete series when passing from normal to pathological subjects.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信