人工智能与数字化照片档案

IF 0.2 0 ART
Art Documentation Pub Date : 2021-03-01 DOI:10.1086/714604
Ellen Prokop, X. Y. Han, V. Papyan, D. Donoho, C. R. Johnson
{"title":"人工智能与数字化照片档案","authors":"Ellen Prokop, X. Y. Han, V. Papyan, D. Donoho, C. R. Johnson","doi":"10.1086/714604","DOIUrl":null,"url":null,"abstract":"The Frick Art Reference Library in New York launched a pilot project with Stanford University, Cornell University, and the University of Toronto to develop an algorithm that applies a local classification system based on visual elements to the library’s digitized Photoarchive. As a test case, the Cornell/Toronto/Stanford team focused on a dataset of digital reproductions of North American paintings and drawings and employed recent advances in artificial intelligence and machine learning to produce automatic image classifiers. The results of this preliminary experiment suggest that automatic image classifiers have the potential to become powerful tools in metadata creation and image retrieval.","PeriodicalId":43009,"journal":{"name":"Art Documentation","volume":"58 1","pages":"1 - 20"},"PeriodicalIF":0.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AI and the Digitized Photoarchive\",\"authors\":\"Ellen Prokop, X. Y. Han, V. Papyan, D. Donoho, C. R. Johnson\",\"doi\":\"10.1086/714604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Frick Art Reference Library in New York launched a pilot project with Stanford University, Cornell University, and the University of Toronto to develop an algorithm that applies a local classification system based on visual elements to the library’s digitized Photoarchive. As a test case, the Cornell/Toronto/Stanford team focused on a dataset of digital reproductions of North American paintings and drawings and employed recent advances in artificial intelligence and machine learning to produce automatic image classifiers. The results of this preliminary experiment suggest that automatic image classifiers have the potential to become powerful tools in metadata creation and image retrieval.\",\"PeriodicalId\":43009,\"journal\":{\"name\":\"Art Documentation\",\"volume\":\"58 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Documentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/714604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ART\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Documentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/714604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ART","Score":null,"Total":0}
引用次数: 1

摘要

纽约弗里克艺术参考图书馆与斯坦福大学、康奈尔大学和多伦多大学共同启动了一个试点项目,开发一种算法,该算法将基于视觉元素的本地分类系统应用于图书馆的数字化照片档案。作为一个测试案例,康奈尔大学/多伦多大学/斯坦福大学的团队专注于北美绘画和素描的数字复制数据集,并利用人工智能和机器学习的最新进展来生成自动图像分类器。初步实验结果表明,自动图像分类器有潜力成为元数据创建和图像检索的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI and the Digitized Photoarchive
The Frick Art Reference Library in New York launched a pilot project with Stanford University, Cornell University, and the University of Toronto to develop an algorithm that applies a local classification system based on visual elements to the library’s digitized Photoarchive. As a test case, the Cornell/Toronto/Stanford team focused on a dataset of digital reproductions of North American paintings and drawings and employed recent advances in artificial intelligence and machine learning to produce automatic image classifiers. The results of this preliminary experiment suggest that automatic image classifiers have the potential to become powerful tools in metadata creation and image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信