{"title":"在非牛顿流体中游动的微型机器人的人工附属物","authors":"K. Perera, Y. Amarasinghe, D. Dao","doi":"10.1109/MERCon52712.2021.9525635","DOIUrl":null,"url":null,"abstract":"Micron-scale mobile robots are being widely used in bioengineering applications, such as in a lab-on-a-chip (LOC) device, due to their capabilities of manipulation, sensing and transportation. Shear rate dependency of rheological properties of a non-Newtonian fluid enables swimming using geometrically reciprocal motion for a microswimmer. Therefore, it is not mandatory to use propulsive mechanisms that are slender in nature such as artificial flagella or cilia to generate non-reciprocal motion. We propose a design approach based on numerical simulations to select a suitable artificial appendage geometry to be used as a propulsion mechanism for a mobile microrobot. Here, the artificial appendage is considered to undergo rowing motion to generate propulsion. The fluid-structure interaction is computed numerically and three criteria are considered for the selection. In this study, a rectangular and a circular geometry are compared highlighting the proposed approach. The circular geometry showed better capability in terms of propulsion force generation, making it more suitable as a propulsion mechanism.","PeriodicalId":6855,"journal":{"name":"2021 Moratuwa Engineering Research Conference (MERCon)","volume":"27 1","pages":"723-727"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Artificial Appendage for Swimming Microrobots in Non-Newtonian Fluids\",\"authors\":\"K. Perera, Y. Amarasinghe, D. Dao\",\"doi\":\"10.1109/MERCon52712.2021.9525635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micron-scale mobile robots are being widely used in bioengineering applications, such as in a lab-on-a-chip (LOC) device, due to their capabilities of manipulation, sensing and transportation. Shear rate dependency of rheological properties of a non-Newtonian fluid enables swimming using geometrically reciprocal motion for a microswimmer. Therefore, it is not mandatory to use propulsive mechanisms that are slender in nature such as artificial flagella or cilia to generate non-reciprocal motion. We propose a design approach based on numerical simulations to select a suitable artificial appendage geometry to be used as a propulsion mechanism for a mobile microrobot. Here, the artificial appendage is considered to undergo rowing motion to generate propulsion. The fluid-structure interaction is computed numerically and three criteria are considered for the selection. In this study, a rectangular and a circular geometry are compared highlighting the proposed approach. The circular geometry showed better capability in terms of propulsion force generation, making it more suitable as a propulsion mechanism.\",\"PeriodicalId\":6855,\"journal\":{\"name\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"27 1\",\"pages\":\"723-727\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCon52712.2021.9525635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCon52712.2021.9525635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Artificial Appendage for Swimming Microrobots in Non-Newtonian Fluids
Micron-scale mobile robots are being widely used in bioengineering applications, such as in a lab-on-a-chip (LOC) device, due to their capabilities of manipulation, sensing and transportation. Shear rate dependency of rheological properties of a non-Newtonian fluid enables swimming using geometrically reciprocal motion for a microswimmer. Therefore, it is not mandatory to use propulsive mechanisms that are slender in nature such as artificial flagella or cilia to generate non-reciprocal motion. We propose a design approach based on numerical simulations to select a suitable artificial appendage geometry to be used as a propulsion mechanism for a mobile microrobot. Here, the artificial appendage is considered to undergo rowing motion to generate propulsion. The fluid-structure interaction is computed numerically and three criteria are considered for the selection. In this study, a rectangular and a circular geometry are compared highlighting the proposed approach. The circular geometry showed better capability in terms of propulsion force generation, making it more suitable as a propulsion mechanism.